
1

 THE CAMBRIDGE DATABASE SYSTEM

 Dr Alan Macfarlane
 in collaboration with

 Dr Martin Porter
 Michael Bryant

 v.1.5 June 1991

 Department of Social Anthropology,
 University of Cambridge,
 Free School Lane,
 Cambridge, CB2 3RF
 England

2

 TABLE OF CONTENTS [Page numbers have altered]
THE MANUAL AND HOW TO READ IT................................6

PART A: MANUAL
CHAPTER ONE. AN OVER-VIEW OF THE SYSTEM.

Databases..7

Files of data..7

Records and their structure..................................7

Information fields...8
 Fields within records, maximum number and length
 The information part of a record field; field size
 String and integer information in the fields
 Group fields and their use
 Sub-fields within fields

Indexing and captioning......................................9

Searching and information retrieval..........................10
 Free text and structured queries in general
 Some general features of 'probabilistic' searching
 Expanding queries and making associations

Summary..11

Size, speed and openness.....................................12

CHAPTER TWO. THE STRUCTURE AND CONTENT OF RECORDS.

Introduction...13

Numbering the records..13
 Identity fields and record types
 Types of identity fields for videodisc materials
 Sound codes
 Automatic numbering done by the computer
 The automatic numbering program
 Reference numbers in the original archives
 Titles of the sources
 The medium in a multi-media videodisc

3

The major part of indexing...................................16
 The short text, length and nature
 Constraints on what to put in the short text
 The longer text and its uses
 Mixing the shorter and longer text fields in indexing

Keyword fields...16
 The need for keyword fields
 Uses for general keywords Specific keywords for
names, places, groups, dates
 Uses for specific keywords
 How to indicate a series of keywords
 The note field
 Cross-referencing
 Group fields
 Special features for museums, archives and libraries
 A summary of the general fields
 Special archival and museum fields and sub-fields
 Expanding the number of fields; some spare codes
 Setting up your own format

Some standardised conventions for data entry.................21
 Conventions in typing dates
 Conventions concerning typing of personal names
 Conventions for typing river and mountain names
 Ranges of non-textual items

Setting constants for repeated fields........................22

Cross-references between records.............................22

The five types of record and their structure.................23
 R-records
 T-records
 A-records
 H-records
 Q-records

CHAPTER THREE. CHECKING DATA AND PUTTING IT INTO A DATABASE.

Preparing, cleaning and building records.....................25
 Building the records as a check of format
 Automatic numbering avoiding checking
 The value of number checking to trap typing errors
 A further stage; for information only

How to set up text files.....................................26

Setting up the database......................................27

4

 Two types of database system; DB and DA databases
 How to set up a Database (DB) database
 How to extend a Database (DB)
 How to set up a Direct Access (DA) database

How to add material to a database............................30
 Batchadding material
 The other method of adding data to a DB database

Modifying the database.......................................31
 Deleting single records
 Editing the data from within the database
 The ability to go out into other programs
Printing out materials from the database.....................33
 Sophisticated ways of printing out records
 Printing out selected fields
 Simpler ways of printing out records

Choice of indexing terms in the database.....................34
 The indexing program to select terms for indexing

Modifying the macros...34

Ways of entering the system..................................35
 To enter 'muscat', 'muscatel', 'discatel' and CDS
 To enter the DB or DA systems
 Turning the record numbers on an off
 Monochrome and colour screens
 Turning the videodisc connection on and off
 One-screen and two-screen versions
 To go into the system with a marked file
 The number of records to be retrieved
 Selecting which database to enter
 Selecting which set of macros and which database to use

CHAPTER FOUR. SEARCHING THE DATA.

Controlling the system.......................................39
 The first choices on the introductory page
 Controlling the screen and making selections
 Moving back up the system

Types of query...40
 Types of searching system
 A hierarchical table of contents
 Free text queries
 Structured queries
 Combining free text and structured queries
 The base page

5

Free text queries and how to make them.......................42
 How to make a free text query
 The order of being shown records

Structured queries and how to make them......................43
 Setting up a structured query
 Finding dates; spans and years
 Finding dates; days, months and years
 Finding persons
 Finding ethnic group
 Finding locality or place

Combined free text with structured queries...................47

The ways of looking at answers to queries....................46
 The three modes of looking at the material; records
 Data retrieval style
 Caption retrieval style
Moving between records, images and texts.....................49
 Moving from record to record
 Seeing a piece of text
 Reading texts

Expanding queries; the marking system........................50
Seeing the terms by which a record is indexed
 Full relevance feedback; marking the records

Setting up files of marked items as tutorials................53
 Two forms of marking and captioning
 Saving, editing and re-entering the marked files

PART B: APPENDICES
A. Technical details concerning cross-references.............55

B. Some suggestions on data entry and error corrections......56

C. The basis of the probabilistic retrieval system...........58

D. How to make sequential searches outside the database......59

E. A parallel system working in q............................60

F. Muscat on MS-DOS..62

G. Some features of the indexing system......................68

H. Musquito: a text processing utility.......................69

I. Files and macros..71

6

J. Some examples of edited records with their codes..........79

K. Introductory choice and help pages........................84

L. How the various fields are indexed; a summary.............86

M. Cross references between records..........................88

N. How to make an embedded query.............................92

O. Discatel; the elementary disc cataloguing system..........95

P. Using Discatel with Muscatel.............................105

Q. How to add new fields....................................109

R. Full texts of the Cambridge Database System macros.......120

S. Full texts of the Discatel macros........................134

T. A quick start to CDSi....................................136

U. Two ways of searching for a set of records...............138

V. The Cambridge Database System Interactive (CDSi).........139

PART C: TUTORIALS
1. Preparing records and loading them into a database.......145
2. How to find data in a database system....................153

THE MANUAL AND HOW TO READ IT
 A simpler, interactive, version of the Cambridge Database
System (CDS) is described in Appendix V. CDS interactive (CDSi)
allows you to start on building a database and entering data
straight away. It would be worth starting by trying out CDSi A
'quick start' to the system is provided in Appendix T.

 The following manual provides a working introduction and
reference work for the full and more powerful Cambridge Database
System 2000. It is written for both those who will use the
system on its own, and those who will link it to optical media,
such as videodisc. Readers who do not intend to use a videodisc
should therefore ignore the few sections which specifically
explain how to operate CDS (the Cambridge Database System) with

7

optical media.

 This database system is developed from the 'Muscat' (Museum
Cataloguing) package written by Dr Martin Porter. Occasionally
cross-references will be made to the more technical
documentation provided in the Manuals to Muscat. The
abbreviations used in such cross-references are:

Martin Porter, Muscat Manual (4th Edition, January 1990),
243pp.

Martin Porter, Introduction to Muscat (2nd Edition, March 1989),
160pp.

These Manuals, which are supplied with CDS, are the technical
manuals which can be used to deepen your understanding of the
system.

 This introductory manual is divided into three main parts.

Part A deals with the system sequentially in four chapters.
Part B contains a number of technical appendices about more
specific topics.

Part C consists of two tutorials, each containing a number of
exercises.

 You may like to read Part A, chapter one, to get an
over-view of the system and then move straight on to the
Tutorials, in order to get a first feeling for how the system
works. Then you might read Part A, chapters 2-4, and the
appendices in Part C as they are needed. In particular, you
might like to read Appendix O, which describes an elementary
form of the system, allowing you to create your own small
database and modify the record structure, the indexing
conventions, and the way the results appear on the screen and in
a print-out.

 Most of the examples used in the Manual and Appendices and
Tutorials are taken from a specific application, the Naga Video
disc project at the University of Cambridge.

8

 PART A: THE MANUAL

CHAPTER ONE. AN OVER-VIEW OF THE SYSTEM
DATABASES
 As with most structured databases systems, the material
needs to be broken up into meaningful units. This can be
conceived of as follows:

System --- database 1 --- database 2 --- database 3 and so on.

That is to say, it is possible, by choosing the appropriate
names for the databases, to have several different ones held in
one computer, any one of which can be made active as needed.

FILES OF DATA
 Each specific database may include a number of separate
files. For instance, files of indexes to artefacts, films,
photographs, written texts and other materials. Thus one has
the structure:

Database --- file 1 --- file 2 --- file 3 and others.

These files can be added to the database one at a time, as they
are ready. There is no limit to the number of files in the data
base. The only constraint is the over-all size of the database.
The information in the files is in normal MSDOS ASCII form.

 Once inside the database these files lose their identity.
The database contains records, but not files. Files are just the
unit by which records are added into the database.

RECORDS AND THEIR STRUCTURE
 Moving down one level, each file consists of a number of
records. There is no limit to the number of records in a file.
Individual records can contain up to 64,000 characters. Since it
is the records which tend to be shown on the computer screen, it
is sensible to keep them to roughly what will fit on one or two
screens, in other words a paragraph of text. Thus one has:

files --- record 1 ---- record 2 ---- record 3 and
onwards.

Each record is a separate entity; it is the most important unit

9

in data organisation.

 There are, in fact, five types of records. The R-records, are
those which are indexed and are either complete in themselves,
or cross-refer to images or texts. The T-records are text
records, which are reached by means of an index. The A-records
are 'control' records which can be used to set up the user
interface, for pages of help and for other purposes, as are 'H'
or Help records. 'Q' (Query) records allow the user to set up a
query which the computer will run, from within other records.

INFORMATION FIELDS
Fields within records, maximum number and length.
 Each record in turn consists of a number of fields. Records
are likely to have information within them which appears to
fall into discrete fields, often in answer to the well-known
questions "Who, what, when, where, how and why". These fields
are indicated by a code or tag. There can be up to 255 separate
codes per record. Since the codes can be repeated and used in
many combinations, in effect the number of fields is unlimited.
Fields may be entered in any order. Thus we have the structure:

record --- field 1 --- field 2 --- field 3

Code and data parts of the fields.
 Each of these fields in our conventions has two parts. A code
part at the start is indicated by an asterisk (*), to indicate
that a new field in the record is being defined. This is
followed by a letter or number or combination of these, which
indicates what type of field the computer is to expect. For
instance, we have decided that *t means a 'text' field, while *k
means a 'keyword' field.

The information part of a record field; maximum field size.
 The second part of the field consists of the actual informa
tion or data. Thus '*k fishes' would indicate a keyword field
with the information or text word 'fishes'. Apart from the
general upper limit of 64,000 characters per record, the
information in the field can be of any length, assuming that
most of the words are not indexed. A constraint does emerge from
the number of indexing terms which can be taken from each
record.

 If the record has too many index terms, it will not go into
the database and an error message will be produced. It is then

10

necessary either to shorten the indexed fields or to change the
'blocksize' and re-make the database.

 The database is set up with 'blocks' of a certain size. There
are certain advantages in not increasing the block size, but
also certain difficulties. One constraint is that the initial
database needs to contain at least 5 empty blocks. Thus, if one
had set the block size at 10k, an initial database of at least
50k would be needed. Since the blocks reside in RAM (Random
Acces Memory), there may be constraints on the block size. In
practice, however, there is unlikely to be a problem.

 The default blocksize for CDS is currently set at 6k bytes.
This will allow you to index records of a considerable length.
With such a block-size, it is possible to have a record with
indexed fields containing up to about 80 lines of text, each
containing about 12 words, a total of 960 words. Of course, one
can also put in much longer fields which are not indexed. The
constraint is the number of indexing terms extracted.
 With the default blocksize, a single record can contain up
to about 600 index terms. It is worth remembering that:
a) not every word is indexed (the, and, to and a few other
words, as well as one-letter words, are not indexed)
b) that if you decide to index a field by both free text and
structured query, this will generate extra terms.
c) that a day/month/year date will generate three indexing terms
(if indexed in date mode).

 If you want to change the blocksize, this can be done by
modifying the 'create' macro in the directory
\muscat\macros\cds, which specifies the blocksize.

 There is another practical restriction. A field which is set
as a 'caption field' (to be explained later), should ideally fit
on one line on the screen, that is, it should consist of up to
about eight words.

 As will be explained later, there are two modes of indexing,
for free text and structured searching. In relation to
structured inedexing, the system will refuse to add records
where a field that is being indexed for structured retrieval
(whether in combination with free text mode, or in structured
mode alone) is too long. The maximum length is about 25 average
length words. These 25 words, and the spaces between them, are,
in fact, treated in structured queries as one single 'string',
which will be used to make a search for exact matches.

 If you try to add a file created by a word processor which
accidentally has a structured (or free text and structured)
field which is too long, you will be told that a structured

11

field is too long and you will have to shorten the field.

String and integer information in the fields.
 The information within a field can consist of either strings
(that is a sequence of letters of the alphabet, numbers,
punctuation marks etc., which are treated as a string of
characters), or as integers. Integers are numbers which can be
used for numerical calculations. The input specification
defines each field as one or the other. If letters of the
alphabet are typed into an integer field, the computer will
indicate an error.

Group fields and their use.
 The normal field contains only one type of information. But
it is often the case that one will be dealing with material
where some of the information applies to the whole record, while
there are some sub-parts which have specific information
relevant to that part only.

 For instance, when a sequence of photographs have been taken
rapidly of a particular event, say a dance, or there are several
shots of movie film made in quick succession from different
angles, it is unsatisfactory to separate them entirely as
different records. On the other hand, each photograph or shot
may need a special description, as well as the general
description for the whole sequence. This can be represented
thus:
record --- shot 1 --- shot 2 --- shot 3

 In this type of record, the general heading is put at the
top, and this will apply to all the records. But each sub-field
may also have both a specific frame number and caption.

Sub-fields within fields.
 Any field may contain within itself further sub-fields, in
other words fields within fields. For instance, you can deal
with the fore/surname problem by defining a structure which had
a general name field (*name) which contained the two sub-fields
(*forename *surname). In practice we have done this extensively
only in relation to the production, collection and acquisition
of artefacts. Each of these fields has to contain some other
information, for instance the date, person, or place of
collection of the artefact.

INDEXING AND CAPTIONING
 The division of the information can be made according to your

12

needs. One obvious way to divide information is into substantive
and administrative fields.

 The substantive part includes a caption, a text field, and
various keyword fields. The keyword fields allow the user to
record details of people, places, ethnic groups, dates, subjects
and themes.

 Index terms in the database are extracted from words in
caption and keyword fields and can thus be searched. But index
terms are not extracted from the pure text field. For this rea
son, important information in the text field should be
identified and inserted into the keyword fields. The information
does not have to be assigned to any pre-planned hierarchical
ordering of categories.

 Administrative information concerns the medium (photograph,
artefact, book etc.), the present location and significant de
tails of acquisition; it could also include, in a library or
museum, the shelf location of the item concerned. The
information in these fields also enters the index of terms and
can be searched for.

 The captioning of visual images, including museum objects, is
necessarily a very subjective matter. Although many attempts
have been made to standardise this by providing a check-list of
what should be noted, none of these can provide more than a
preliminary set of categories. After a large amount of testing,
we have decided on a relatively simple selection as follows.

 In the captions to photographs, we have broadly described
what is happening, if there is action, or what the nature of the
subject matter appears to be. Any particularly striking details
may be noted, for instance a particularly fine piece of ornamen
tation. We have tested this procedure and found that several
different people looking at the same photograph independently
will describe it in roughly the same way. Yet there can be
little doubt that people from a different culture and with
different interests would describe the photographs in different
ways.

 The captions can only thus be a first approximation, and
users will have to add further details (often contained in other
fields) after searching and analysing images. Captions are
necessary, however, since database searches can only be made by
presenting the user with a set of relevant answers identified
by their short captions.

 In the case of objects we have tried to include something on
the size, materials, functions, colours, motifs of each object.

13

But when dealing with a complex three dimensional object, it is
obvious that one can only capture a little of its complex
character in words. That is why we also have a picture.

 Likewise in the case of moving film, a sequence lasting
twenty seconds, involving several people, could generate several
pages of textual description if one noted each gesture, posture,
interaction, all the material objects present. We have merely
simplified this in most cases to one line, for instance "group
of men and boys catching fish". Again, it will be up to users to
refine what can only be a preliminary index.

 The same simplification is clearly necessary with texts.
Often there is a paragraph which contains information on many
different topics, for instance marriage payments, political
alliances, economic transactions, the interrelations of chiefs
and subjects. In the short caption one can merely take out what
appear to be some of the more central themes.

SEARCHING AND INFORMATION RETRIEVAL
Free text and structured queries in general.
 In order to find a particular record and its attached visual
or textual information, there are two main methods of searching.
These are 'free text' and 'structured' (Boolean) searches. The
two can be combined in this system. Structured queries (of the
'and' 'or' 'not' variety) are fairly standard in databases.
However, they have certain inherent weaknesses. The number of
answers retrieved is usually too large or too small; users often
require an expert to compose Boolean expressions of any complex
ity for them; the retrieved set of answers is usually not ranked
in any way, and so it is necessary to inspect the entire list in
the search for relevance.

 The powerful feature of this system lies in the fact that it
works in a way that makes it possible to inter-act with the
computer. Thus it is possible to use human insight alongside
computational power to improve the quality of the questions and
hence the answers.

Some general features of 'probabilistic' searching and
'relevance feedback'.
 For instance, one may ask a specific question, to which the
best matching answer is given, then the next best answer and so
on in order of declining relevance. The user is asked whether
each answer is what he or she was looking for or not. Those
marked as 'relevant' are then stored by the computer. The

14

computer then presents to the user a list of the terms which
appear to have been most significant in those answers marked as
'relevant'. This list will include other, associated, terms in
the answers which the user may not have realised were of
importance. The user is then asked to add in whichever of these
new terms might be used in re-phrasing the question in a more
precise form. Then a better and more powerful query is re-run,
bringing out further new answers and revealing further
unexpected connections.

Expanding queries and making associations in searching.
 In effect the computer is helping the user to find associa
tions which were not originally anticipated. This system is
therefore a powerful tool for expanding queries and for making
links between hitherto unconnected facts. The software for the
system has been developed to deal with materials in museums,
libraries, archives and elsewhere. It will deal with databases
of any size, including visual and non-visual materials, and
works on a range of desk-top microcomputers, using less than
300k of RAM within which to run.

SUMMARY
 The general structure of what we have described so far may
be
summarised in a diagram as follows:

 system
 \
 database 1 database 2 database 3.....

 \
 \
 record 1 record 2 record 3.....

 \
 \
 field 1 field 2 field 3....
 (also 'group' fields)

 \
 \
 sub-field 1 sub-field 2 sub-field 3

 \
 \

15

 code part(*) and data part

SIZE, SPEED AND OPENNESS
 Thus we have a system that within one size constraint,
that of a maximum of 64000 characters per record (about l5 pages
of typed information on standard A4 paper) is otherwise
flexible. It can be used to index most kinds of material.

 It is relatively fast. Currently, searching a thirty mega
byte database containing roughly four thousand pages of indexes
and texts, split into some twenty thousand separate records, we
find the following search times. If one asks for all the records
indexed by a specific date, they are retrieved in less than two
seconds; likewise all the records with a certain person or place
mentioned will be found within two seconds. If one asked a
structured (Boolean) query, which asked for all the records
containing the intersection of a person's name, a place name and
a date, the records would be found again within two or three
seconds or less.

 'Free text' retrieval can take longer, because the records
are ranked in order of the probability of their matching the
query. Thus a query with three terms, each occurring about 15O
times, will produce the best hundred answers in order of
likelihood in less than ten seconds. With ten terms, each with
several hundred occurrences in the database, the query might
take up to twenty seconds on a very slow machine, a second or
two on a fast one.

 The speed is increased considerably by being able to combine
structured and free text searching. The machine will only take a
second or two to find all the records mentioning a place name,
and only a few seconds to find and order the records which match
the terms in the free text part of the query. Since the system
contains a sophisticated suffix-stripping or 'stemming' algo
rithm, it is possible to type in a word like 'marry' and get all
the variants (marriage, married, marrying etc.).

 The speed of retrieval is also more than doubled in 'free
text' searching if the records are held in a DA (Direct Access)
Database. As explained later, such a Direct Access system can be
easily built from your updatable Data Base system, when needed.
Structured queries in a DA database are usually answered instan

16

taneously and free text queries usually within a second or two,
even with thirty or more megabytes of data.

 The system is an open one. The images on a videodisc may be
fixed, but the indexes to them and all the subsidiary texts are
held on a read/write medium (a hard disc). It is possible to
delete records, change records, or continuously to add further
records and texts to the database. It is also possible to extend
the size of the database if it is too small. These changes can
be made either from outside the database, or inter-actively from
within the database itself.

17

CHAPTER TWO. THE STRUCTURE AND CONTENT OF RECORDS
INTRODUCTION
 The following suggests a format for a structured
database. It provides a template, based on a particular project,
showing how you might index a set of varied materials. Of
course, you may want to do this entirely differently, or extend
and alter this system. A simple way of setting up your own
record structure and indexing system is described in Appendix O.

NUMBERING THE RECORDS
 Each record must have an unique number or identity in the
database. This can either be given to the record by hand, typing
it in, or generated automatically by the computer. The former
method can be illustrated by looking at a particular example.

Identity fields and record types.
 In the case where a record is the description of a picture on
the videodisc, the identity number will also provide information
about the type of material on the videodisc. This means that
when material is requested, the computer can behave
appropriately, showing moving film as moving, stills as still
and so on.

 Thus there is a code (*i) for the 'identity' field, which is
followed by a letter and a number. For instance, we might have
*i B.476. 'B' here stands for a photograph, and 476 is that
frame number on the videodisc. Or you might have *i F.2001=2500,
which would be interpreted as 500 frames of moving film, which
are described in the record and played when you ask to see them.

 The number sorting algorithm sorts on the first four digits
of a number and is therefore inaccurate if there are less than
five. The program therefore automatically adds leading zeros to
videodisc frame numbers, as follows:

00001 - 1
00010 - 10
00100 - 100
01000 - 1000
10000 -10000

This is important to remember when searching for frame numbers,
as explained later. Frame number 237, for example, would have to
be asked for as 00237.

18

Types of identity fields for different videodisc materials.
 We have divided our materials into the following categories,
for which the following codes have been used:

Type of material Code letter

A photograph or sequence of stills B Moving film
F

It is thus assumed that whenever a number is preceded by one of
these capital letters in the identity (*i) field, there is a
corresponding image, or set of images, available to be seen on
the videodisc.

Sound codes.
 Some special codes are needed for the sound. One has two sets
of choices. Firstly, you can show sound and picture
simultaneously (for instance if one has synchronised sound), or
you can play the sound alone, without showing a picture.
Secondly, you can play the sound on channel one of the
videodisc, on channel two of the videodisc, or the two sounds
together. This two-way and three-way choice gives rise to the
following six options.

Film with audio, channel 1 = I
Film with audio, channel 2 = J
Film with audio, channels 1 and 2 together = K

Audio only, channel 1 = U
Audio only, channel 2 = V
Audio only, channel 3 = W

These prefix letters will go before the record number. For
instance if you had some music on channel 2, from videodisc
frame number 2000 to 2500, and wanted to turn off the picture
and hear the music only, this would be:

V.2000=2500

Automatic numbering done by the computer.
 The second method of numbering is done automatically. This
needs to be done for textual materials in the database, which
do not have corresponding images on the videodisc. For example,
you might have a diary or book, each paragraph of which has
been separated off as a record. Thus a book containing 300

19

pages, each page three paragraphs on average, might constitute
a file of some 900 records. It would clearly be a waste of time
to number each of these by hand.

Reference numbers in the original archives.
 The original reference number of material, say the acquisi
tion number of an object in a museum, or storage number of a
photograph or document, can be preserved if necessary. This is
important in order to find objects in a certain museum location,
for instance. We use the field *r for this, which might contain
any information that is necessary. For instance

*r Northwing 426 or *r 37.977

would be equally suitable. This is for reference purposes, and
is to be found within the production, acquisition or collection
fields, as described later.

Titles of the sources.
 The title of the materials which is being put into the data
base needs to be indicated. This could be done by using the
field *c . For example, you might have the title and author of a
book, the name and date of a photographer. Examples of what is
put in this field would be as follows:

*c photographs by J.H.Hutton taken in 1921

*c Haimendorf, 'The Konyak Nagas' (1970)

*c objects in the Pitt Rivers Museum, Oxford

*c 16mm colour film taken by Ursula Graham Bower in 1940

 These titles will appear with each record, giving a viewer an
idea of where material he is seeing comes from. Shown a film,
photo, object or piece of text, he or she is likely to want to
have a general description of what the material is and who made
or collected it. This field is also indexed, so you could use
it, in combination with other keywords, to find specific
information within a particular source.

The medium in a multi-media videodisc.
 When dealing with data in a multi-media system it is
important to be able to distinguish between the different media.
For instance, you might want to look at just still photographs,
or just films. In order to be able to do this, you can use a *m

20

or 'medium' field.

*m film (moving film or video)

*m sketch (sketch, painting, drawing)

*m photograph (colour or black and white still photographs)

*m sound (audio materials)

*m artefact (three-dimensional object)

THE MAJOR PART OF THE INDEXING
 The most important part of the indexing system concerns the
textual descriptions. There are three levels.

 The short text, length and nature.
 The first level consists of a relatively short description of
the record, which we call the *u or caption field. With images
on the videodisc, where the description is seldom more than two
or three lines long, we put this in the *u field. Basically,
anything that will fit onto a small index card is likely to fit
in this field.

Constraints on what to put in the short text.
 The constraints on what to put in this field are as follows.
This field is automatically indexed by the information retrieval
system. Consequently you do not want to overload the indexes
with too much material (even though a list of words like 'and'
'to' 'with' etc. are not indexed). On the other hand, if
material is not put into this automatically indexed field, it is
likely to be un-recoverable.

 From experience with indexing museum artefacts, if a descrip
tion is only a few lines long and contains important words in
it, it is best to put the whole of this in the short text field.

The longer text and its uses.
 The real use for the longer text field, *t , comes in longer
written materials such as books or manuscripts. It is obvious
that to index every word in, say, ten books, would not
necessarily be a good strategy. It could be done, but would not
only mean that the index would be very large, but that you would
now not be able to find what you wanted because a very large
number of records would come up in answer to most queries.

21

Mixing the shorter and longer text fields in indexing.
 With paragraphs of information, therefore, the *t is used for
the text, which remains unindexed. A short summary or caption of
the main content of the paragraph can be provided in the short
text (*u) field. For instance you might have a series of (*u)
short texts for a book as follows:

*u entering the village of Wakching
*u meeting the headman and drinking tea
*u watching a man making a pot
*u boys shooting arrows; preparing for a dance
*u a man arrives with salt for trading

These would be indexed and you could thus find the paragraph by
searching for headman, pot, arrows, salt and other words.

KEYWORD FIELDS
The need for keyword fields.
 The short description alone may not be enough to search on,
however, so you can devise a series of different kinds of
keyword fields. This allows you to add in either details, or
extract them from the shorter (*u) or longer (*t) fields, for
special purposes.

Uses for general keywords.
 The general *k keyword field includes all words that you think
a user may want to search for which would not be found in the
caption. For instance, you might have a paragraph of text which
was mainly about marriage ritual and you had written a caption
as follows:

*u the rituals used at a marriage of an old man to a young
woman

But the paragraph might incidentally have some particularly
striking material about other matters, so you might add:

*k opium * tigers * symbolism * archery

These will be terms that are added to the index.

Specific keywords for names, places, ethnic groups, dates.
 As well as the general keywords, there are more specific
ones. The principal ways of searching could be as follows:

22

by person name - *kp for example *kp Hutton

by locality name - *kl *kl Kohima

by ethnic group - *ke *ke Konyak

by date - *kd *kd 20.12.1939

Uses for specific keywords.
 Although for some applications these specific keywords may
not be necessary, to implement a full structured and free text
query system it is advisable to set up some special fields. This
also helps in setting up alphabetical lists of places, names and
other repeated data for users. It also helps you to check for
consistency and synonyms.

How to indicate a series of keywords.
 If there are more than one item per keyword field, this is
indicated as follows:

*kp Jones * Smith * Brown

The computer assumes that each subsequent star (*) is a new
piece of information, but within the same field, in this case
the *kp field.

The note field.
 The above gives you almost all the fields that are needed to
deal with the majority of texts, photographs, moving films and
other images. It is also useful to be able to add notes of your
own, which are clearly distinguished from the original text.
Thus you can make comments on the material, without these
becoming muddled with the original. This is done by using the
*ns or 'notes' field. An example would be:

*ns this photograph was in very bad condition
 *ns this has been translated from the German

This will appear separately, but alongside the rest of the text.

Cross-referencing.
A simple cross-reference can be achieved with another field,
namely *qv. For example you might have:

23

*qv Austen, Pride and Prejudice, p.75

which would alert the user to relevant information on that page
of the named book. By the insertion of a specific record number
a user can be taken straight to the relevant page of text.

Group fields.
 It is sometimes desirable to have items of information
grouped together within a record, so that some of the material
refers to all the parts, and some only to specific parts. One
way to do this is through the 'group field' (*g) (See MM,p.8 for
a more general description). Let us illustrate this with an
example.

 Supposing we had a set of photographs taken on a certain day
by a photographer, all roughly concerning the same activity. We
thus want to group them together in one record. On the other
hand each photograph deserves a separate caption. To take a
non-anthropological example, this might lead us to create the
following record:

*kd 12.10.1986
*kl Cambridge
*u a rowing regatta; a race between Cambridge and Ely
*g *i B.2000 *u getting the boats into the water
*g *i B.2001 *u the coxes exchange a joke
*g *i B.2002 *u the end of the first section
*g *i B.2003 *u Ely cross the finishing line
*g *i B.2004 *u a friendly drink after the race
#

In this case the date, place and general caption would apply to
all the subsections, but the material in the parts of the group
would each be kept with separate headings.

 Thus *g can be followed by most of the other fields, which
will then be treated as referring only to that part of the re
cord.

 An alternative way to create a record with a set of linked
photographs or films avoiding the use of the *g field uses the
facility of repeated fields. You can simply put in the set of
references you want to make, separated by a star (*), to show a
repeated field.

 For instance, you might have a set of still photographs and
films which were numbered as follows: B.200, B.300=350, B.176,
F.2000=2100, B.276.
Thus there are three stills, a series of still frames, and some

24

moving film, all related to the same topic. This can be put in a
record as follows:

*i B.200 * B.300=350 * B.176 * F.2000=2100 * B.276.

The effect of this is that when you ask to see the pictures
associated with this record, you will be taken to the first of
the above, which has a 'Next' box on the menu. You can thus move
very quickly through the various frames, without having to go
backwards and forwards to boxes on the record.

Special features for museums, archives and library
documentation.
 The programs behind the Cambridge Database System were
originally developed for museum use. After considerable trial
and error and consultation of the appropriate museum
documentation database literature we devised some extra fields.
These provide the information which is often given on museum
documentation cards and required by museums and archives.
Although this is a specific application, it may be useful for
those using the system in a museum or archival setting.

 You usually need the size or measurements of an object. This
is contained in the *z field, for instance:

*z 6x5 cms or *z height 7 inches, width 3 inches

This can be typed in exactly as it is needed since it is not
indexed in itself.

 You often need information about the provenance or origins of
objects or archives. This can be broken down into who produces
or made the object (*prod); who collected it from the field
(*coll); and who acquired it (the museum or archive or private
individual (*acq). Each of these fields has sub-fields which
specify features in more detail:

*f form or method (e.g. by purchase, gift or whatever)

*p the person or persons involved

*d the date

*l the location

*e the ethnic group

*n notes

25

*r the reference number in the archive or museum

An example of a record of an artefact might thus be:

*u a drinking vessel made of wood
*prod *e Konyak Naga
*coll *p Butler/ Major J *acq *f gift * Butler/ Capt J *r 29.110
*n this is a son of the collector

The above roughly replicates catalogue cards. It should be noted
that it is time-consuming to type all this accurately into a
computer, though there are methods to speed this up, as
described below.

A summary of the general fields.
Code Nature Notes

*i unique number refers to image number on disc

*c title in full, eg. author and title

*m medium for example, film or sound

*u short caption a short, indexed, description

*t full text usually a paragraph or so

*k keyword extra keywords can be added

*kp person(s)

*kl location(s)

*ke ethnic group(s)

*ns notes

*qv see also

*z size

*g group field this can contain extra information
 which only refers to a part; it can
 therefore contain all of the above
 codes within itself

Special archival or museum fields and sub-fields.

26

*prod producer or maker of the object, photograph etc.

*coll collector of object

*acq acquirer of the object

These codes must contain at least one or more of:

*f form or method

*p person or persons

*d date
 *e ethnic group

*l location

*r archival or museum record number

*n note

A more technical description of how each of these fields is
indexed is contained in Appendix L. If you want to try to try to
add in some further fields, an example of how this is done is
given in Appendix Q.

Setting up your own format.
 You may want to set up your own format, using different
codes with different meanings. A simple way of doing this is
described in Appendix O, or, more simply, in Appendix V.

SOME STANDARDISED CONVENTIONS FOR DATA ENTRY
Conventions in typing dates.
 We have standardised dates as day, month, year. If the day or
month and day are missing, they are ignored. Thus we could have:
12.4.1939 or 4.1939 or 1939

A span of dates is given in the form:

24.4.1939-28.4.1939 or 4.1939-5.1940

as appropriate.

These are the standards in the date fields (*kd and *d), which
are indexed. In the text fields (*u and *t), the dates can
appear in any form you like, for instance May 1940, or Spring

27

1940.

Conventions concerning typing of personal names.
 If personal names appear in the text fields, they can be in
any form. But if they are in the person name fields (*kp or *p),
where they will be used for indexing, they are put in the form:

Woodthorpe/ Col.R.G. or Hutton/ John

This enables you to print out alphabetical lists sorted first
by surname and then by initials, titles or forename second.

Conventions for typing river and mountain names.
 In order to distinguish the names of mountains and rivers
from other place names, we type

Japvo Mt. meaning Japvo mountain
Zulo R. meaning Zulo river

Other abbreviations for other natural features could be
developed as needed.

Ranges of non-textual items.
 It is possible to specify ranges. This is done by giving the
start and end number, separated by "=" or an equals sign. Thus
you could have the following example:

B.100=108 - meaning photographs 100 to 108

or F.2500=2800 - film between these frame numbers.

SETTING CONSTANTS OR REPEATED FIELDS
 It is often the case that a set of records will all have a
field in common. It is clearly a waste of time to type the name
of a photographer or the title of a book hundreds of times, each
time it appears in the separate records.

 There is therefore a mechanism for setting a 'constant' which
the computer will automatically place with each record until
this constant is cancelled or superseded. To type a constant
you type in a code and date, for example *kl Kohima, and then
set this as a constant by typing #m, followed by a letter. For

28

instance:

*kl Kohima #m a
*kd 194O #m b

would set two constants, a and b, which would be added automati
cally to all subsequent records until cancelled.

 At the end of setting a list of constants one 'locates' them
by typing #L and then typing their letters. The example above
would thus look as follows:

*kl Kohima #m a
*kd 1940 #m b
#L a b

This would then be followed by the individual records, each of
which would automatically have these two fields added to it,
until you alter the constants.

 To give a more elaborate example, you might have at the start
of a file the following list of constants:

*c a manuscript diary by J.P.Mills #m a
*m photograph #m b
*kl Assam #m c
*ke Angami Nagas #m d
*kd 12.1925 #m e
*kp Mills/J.P #m f #L a b c d e f

This would then be added to each diary reference. After a while
the date might change. You could then type:

*kd 1.1926 #m e
#L a b c d e f

and the new date would be inserted.

In order to suspend all the constants you type an 'empty' loca
tion (#L) list between records, as follows:

#L
new record......

 To cancel all the constants, you set them, but do not give
them any definition or value, as follows:

#M a b c d e f

new record....

29

You can now start again.

Cross-references between records and embedded queries
 The preceding description gives you enough information to
set up normal 'R' records. Two additional and powerful features
of the system are for more advanced users, namely the ability to
set cross-references between records which take you
automatically to another record, and the possibility of writing
a query which is 'embedded' in a record. Appendix M describes
how to set up cross-references, and Appendix N explains embedded
queries.

THE FIVE TYPES OF RECORD AND THEIR STRUCTURE
 There are five main types of 'record' in the system. These are
treated differently by CDS 2000, according to the value of the
letter part of the identity.

R-records.
 The R-records, which take the form, for instance, R.459, are
those which are indexed within the database. When you are
running an information retrieval query, this will retrieve
R-records and only R-records. Only terms in the R-records are
put into the index. Thus an R-record is a complete item of
information, or it can cross-refer to another record. (An 'R'
record can contain any number of \...\ cross-references, or a
single |...| cross-reference. /..../ cross-references should not
be used, and will be treated as if they were \....\
cross-references, as explained in Appendix M.)

T-records.
 T-records are pages or paragraphs of text, for instance from
a book or manuscript. Cross-references to other pages of text
can be made from a T-record, as explained above.

A-records.
 These are 'control' records, which include 'help' text pages
and pages for constructing a structured ('Boolean') query.
(They should not contain |...| cross-references, but are
otherwise somewhat similar to T-records.)

Q-records.

30

 These are 'query' records, which allow you to 'embed' a
query within a record of any of the above types. Their purpose
and nature is explained in Appendix N.

H-records.
 These are 'help' records, which can be used in the
introductory pages to give specific guidance to a user of the
system.

31

 CHAPTER THREE. CHECKING DATA AND PUTTING IT INTO A DATABASE

PREPARING, CLEANING AND BUILDING RECORDS
 If you now have a file containing a set of records in the
appropriate format, you will need to check their accuracy,
number them, and mount them in the database. It may also be
helpful to print out selected fields and to sort them to help
with further indexing and checking. This chapter will explain
these stages. As you will see, almost all the commands are
pre-fixed by c-, for instance c-build. This indicates that a
special set of 'macros' or programs are being used.

Building the records; a check of format.
 All records have to be 'built' before they can be put into
the database. Since a record will not 'build' unless it is in
the right form, the build program is also a crucial test for
accuracy in specifying the codes.

 'BUILD' is the program which takes a text file of ordinary
typed information, plus the codes explained above, and then
converts it into a series of 'built' records, suitable for input
into a database. After entering 'muscat' the simple form of the
command is:

c-build from DATAFILENAME.txt to NEWFILENAME

 DATAFILENAME is your text file, which must have an extension
to it of .txt, and it is copied to NEWFILENAME, which is given
the extension .mus (for muscat file). An exercise showing pre
cisely how to do this is included below in Tutorial 1. This will
make use of the 'build' specification. (The creation of the
build specification is described in MM,pp.34ff, and MI(Muscat
Introduction),pp.71ff. If 'build' fails, errors will be listed
and can then be corrected. Some suggestions on how to correct
such errors is contained in Appendix B.

Automatic numbering avoiding checking.
 All records have to be given a number before they enter the
database. This number is most simply given by an automatic num
bering program, which thereby avoids the problem of inconsistent
numbering. An exercise in Tutorial 1 will take you through this.
In essence, you use:

c-number FILENAME.MUS TO FILENAME2

32

Filename.mus is your 'built' file, which is then numbered and
copied to a new name, also a built file. You will be asked what
type of number is to be given (T. or R.) and what number to
start at. The rest is done automatically. You need to ensure
that numbers you assign do not overlap. If you give two files as
starting at T.1000, for instance, the latter set of records will
over-write the former.

The value of number checking to trap typing errors.
 Although you may finally number the records automatically,
the CHECKID program is useful to check identity numbers, that is
the videodisc *i numbers. When you have long lists of numbers,
for instance a thousand photographs, each with a consecutive
number, it is difficult to check these by eye. CHECKID will
automatically show up any errors which are reflected in a wrong
order, for instance if you have typed:

*i R.40145
*i R.40146
*i R.41147
*i R.40148

and taking the built file containing these records type:

c-checkid from FILENAME

You will get the following error message:

Input recs3 and 4 not sequential.
Faulty recs (if any) left in $work\f3

You then turn these faulty records into an ordinary file by
going:

c-list $work\f3 to filename

Then you can look at the file 'filename', which is in the \mus
cat\cds directory, using a word processor. Of course, you may
have intended the numbers to be out of sequence, and intend to
make the records acceptable to the database by covering over
this fact by automatically numbering the records. In this case,
these are not errors, and can be left out of sequence.

A further stage; for information only.
 A further step, which the user will not see and need not
worry about, is worth mentioning for information. Particular

33

print characters are needed to make the material appear
correctly on the screen of a desk-top computer. To do this, a
file is put through a special program called LISTE1. This is now
built into the BATCHADD program and so is done routinely,
without the user being aware of it.

HOW TO SET UP TEXT FILES
 As explained earlier, only R-records are indexed, and thus
only R-records will be found through an information retrieval
query. Yet you may want to include very large text files, for
instance books or manuscripts. You want to find a page of text,
and then be able to read it and move backwards and forwards
through the text.
 A paragraph of a book or diary can be conceived of as
consisting, in fact, of two records. There is a short caption or
description of the paragraph, for instance:

A trip to Kohima to see the governor

There may also be certain keywords, that is names of people,
places, ethnic groups or whatever, which are in the paragraph or
related to it, which have been abstracted and put into keyword
fields. All this will go into an indexed R-record.

 Such an R-Record is likely to have a title (the name of the
book or description of the manuscript), a variety of names,
dates, places, ethnic groups, as appropriate, and a cross-refer
ence to the full text to which it refers. This cross-reference
is of the {|T.100|} variety, mentioned above. Thus when you find
the Record referring to a paragraph, you will be offered the
menu option 'Show', which, when selected, will take you to the
appropriate paragraph of text or T-record. From this you can
move back to the R-record, or backwards and forwards through the
text, paragraph by paragraph, even though these paragraphs no
longer correspond to your original query.

 Meanwhile the text file consists of a series of T-records,
each of which has cross-references to the previous and next
pages, and also, perhaps, to a table of contents.

 This can be visualised thus:

 R.100
 \
 \
T.99 - T.100 - T.101 - T.102 - T.103

 Clearly, to add in all these cross-references between

34

records and texts, and between paragraph and paragraph of text
would be a very long and tedious business by hand. There are
some macros to help to do this. Exercise 5 in Tutorial 1
explains how this is to be done.

SETTING UP THE DATABASE
 The cleaning of data is common to both database systems, but
at this point the path diverges and it is necessary to explain
the two types of database.

Two types of database system; database (DB) and direct access
(DA).
 Each type of database has its advantages. DB systems are
more flexible in that you can add new files to the database, or
delete, add or change single records, without destroying the
whole database. But searches are slower than in Direct Access
systems (the difference may be anything from a fraction of a
second to a few seconds). Likewise, the records are not as
tightly packed in the database (DB) system; the DA system may
take as little as half the space to store a set of data.

How to set up a Database (DB) system.
 In order to set up a DB (Data Base) system, you merely type:

c-create

 You are requested to specify the number of kilobytes (1000
bytes). Thus if you want a two hundred k(ilobyte) database, you
type '200' in answer to the request. This will create an empty
200k database. This database is contained in a file called
DB.DA, and resides in the \muscat\cds directory, or whatever
sub-directory you are in.

How to extend a Database (DB).
 If, at a later point, the database fills up, you can make it
larger by extending it, using the following command within Mus
cat:

dbextend DB.DA to DB1.DA bytes 20000000

This would take the old database, db.da, and extend it by 20
megabytes, saving the material that is already in it. Thus, if
you have a 1O mb database and want to extend it to 25 mb, you
will extend it by 15 mb. Temporarily, you will need a total of

35

35 mb. while the operation is under way to accommodate both ver
sions.

 If the extension fails for some reason during the process, the
old version will not be corrupted. If the extension has been
successful, the old version can then be deleted. The best way to
do this is to use the following MS-DOS commands:

rename db.da olddb.da
rename db1.da db.da

make sure that the new database is all right, then type:

del olddb.da
In practice, to extend a database of 1O megabytes to one of some
25 megabytes only takes three or four minutes. All this should
be done from within 'muscat'.

How to set up a Direct Access (DA) Database.
 There are two methods to set up a Direct Access (DA) system
(which is more compact, faster, and will prevent people from
changing it). One is to create it directly from a file, the
second is to download it from a DB database.

 In the former, all the records that are to be put into a
database must be in one file. No further records can be added
once the DA database is set up. At the start of the file you
will need to have screen control records, as in the A.1, A.2
etc. records printed in Appendix K. A set of these is provided
in the intro.txt file in the \muscat\cds directory. These may be
edited to make them appropriate for your use, as indicated in
Appendix K. They should then be added to the start of the file
you wish to turn into a D.A. database.

 When you have a clean file ready, with the screen records at
the front, 'build' it, 'number' it (answering 'A' to the type of
record request; starting at the number 1). Then type:

c-setupir filename (the name of your file)

You will now have a DA database, contained in two files called
DATERM and DAREC in your current directory. Remember that doing
this will over-write any other DATERM and DAREC files in that
directory, which need to be re-named if you want to save them.

 The other method is for use if you have already built up a
DB database and then want to make a DA version. You use the
command:

36

c-reload

This asks you , with the prompt db=, for the name of the
database which you want to unload. To this you would reply
db.da. This would take the file db.da (a database in fact) in
your directory \muscat\cds and make a copy of it as a DA
database (retaining also your original DB version).

This then does the following automatically:

c-unloadt <db> to $work\f1
c-loadt $work\f1 to daterm
c-unloadr <db> to $work\f2
c-loadr $work\f2 to darec

In plainer language, this uses four macros, which do the follow
ing.

'unloadt' takes a named database and unloads the terms in it to
a temporary file called f1 in the directory \muscat\work ($ is
always an abbreviation for \muscat).

'loadt' then takes this temporary file and converts it into a
permanent file of the indexing terms, called 'daterm'.

'unloadr' takes the same database and unloads the records to a
temporary file called f2 in the same directory, \muscat\work.

'loadr' takes the temporary file f2 and loads it into a
permanent file of records called 'darec'.

If you have plenty of space, this whole procedure can be done in
one go, using c-reload, as stated above. It takes some time, up
to an hour for a database of over 15 megabytes on a fairly slow
machine.

It should be remembered, however, that it also, temporarily,
takes up a lot of space. In the final version, the DA file will
probably be about half the size of the DB file. But the
temporary files that are created are as big as the final DA
files.

In effect, this would mean that if you started with a 1O
megabyte DB file which you wanted to unload, you would need
roughly the same space again, temporarily, while this process
was going on, 5 megabytes for the final version of the DA file,
5 megabytes temporarily.

You can save some space by doing the process in stages. In other

37

words, instead of using c-reload, do each of the stages, as
specified above, starting with c-unloadt. After setting up the
'daterm' file, the temporary file f1 can be deleted (with any
other temporary files which tend to linger in the sub-directory
\muscat\work\ and need periodic cleaning out). But the records
file tends to be much the larger, so you may still have
problems.

 One solution, of course, is that once you have created the
temporary work files f1 and f2, you can store your database
somewhere else temporarily. Using the 'Backup' and 'Restore'
archiving programs on your micro, you can release this space for
a while, and then retrieve the DB database at the end, when you
have deleted the temporary files f1 and f2, once the DA system
is fully set up.

 The final product consists of two files, called DAREC.DA and
DATERM.DA which are held in the \muscat\cds directory.

 Whatever you do, remember to remove the temporary files at
the end, otherwise you will be filling your machine with a great
deal of unnecessary material.

HOW TO ADD MATERIAL TO A DATA BASE (DB).
Batchadding material.
 There are two main ways to add material to a DB. One of them
is used for R-records, for instance indexes of photographs or
artefacts or books. This is by using the program BATCHADD. What
this in effect does is as follows:

c-build file1 to file2
c-liste1 file2 to file3
c-build file3 to file4
c-number file4 to file5
c-add file5

But in order to invoke it, all you have to do is to type:

c-batchadd

You will then be asked what is the name of the file from which
the records are to be taken, at which, for instance, you could
type millsbw.txt. Note that these are text files, that is to say
'unbuilt' files, with the extension '.txt'.

Then you are asked what type of records they are, to which you
would normally reply R (capital R for R-records). Next you are

38

asked what number to start numbering at. Here it is essential
that there is no overlap with other records of the same type.
Although there is no problem if you have a set of records T.1000
onwards and R.1000 onwards, if you put in two sets of R.1000
onwards records, the set that are put in later will overwrite
and destroy the earlier set.

 When you have answered these prompts, a carriage return will
automatically feed the records into the database. A record of
how the program is proceeding will be given, with error messages
if the program fails.

 Depending on the number of terms to be indexed and the power
of your computer, it will take between two seconds and two
minutes for 100 records to go through this program. So a file
with 1000 records will take between twenty seconds and twenty
minutes to process. A big file of photographs, for instance a
set of some 2,500 photographs, may thus take between twenty-five
minutes and an hour. Since text files (that is T. records), do
not themselves contain indexing terms, they can be added to the
database very much more quickly.

The other method of adding data to a DB database.
 If you want to add data which has already been numbered, you
can use a simpler program thus:

 c-add from FILENAME

This file will then be added to the Database. This is one way to
replace defective records, or to add text files. The file must
be a built and numbered file, with the extension .mus, residing
in your \muscat\cds directory.

MODIFYING THE DATABASE
Deleting records.
 One way to modify a database is to delete faulty records. In
order to delete a single record from outside the database, you
can go into muscat and type.

c-del R.100 (where R.100 is the record to be deleted)

 If you want to delete a whole set of records which have been
added to a database, go into the database and find the record
number of the first record in the file. Supposing this is record
number 500, you then do the following.

39

 Make sure that the file of records which you have added in
error is available and has the ending .txt (for instance
photos.txt). Go into CDS and type:

c-batchadd photos
 You will then be asked the letter code. Normally you would
reply with a capital R, though it might be another letter if you
have numbered the records as A, T or other records. Then you
will be asked the starting number, to which you would here reply
500. All the records in that file will then be deleted from your
current database.

Editing the data from within the database.
 If you want to change a record or add a single record while
you are in the database, this is possible by using an in-built
screen editor.

 You find a record you would like to change and press the
control key and function key 1 (^F1).

 You will now see the record displayed in its full form. It
can be edited with the screen editor. This screen editor has
some automatic commands, as follows:

^u - sets upper case ^l - sets lower case
^s - adds a space
^backward arrow - goes to start of a line
^forward arrow - goes to end of a line

Control with the function keys, has the following effect:

F1 - delete to end of line
F2 - delete line
F3 - go to top of file
F4 - go to bottom of file
F5 - insert line
F6 - join
F7 - delete block
F8 - windup and save

No shift (lower case) with function keys:

F1 - delete
F2 - blank line
F3 - previous line
F4 - next line
F5 - start block

40

F6 - end block
F7 - move block
F8 - copy block
F9 - quit without saving

You can also use the usual arrow keys, delete and other buttons
to move around the text and delete or add in words.

When you have finished your editing, you can quit without saving
by typing F9, as above. If you want to save the edited version,
type control F8. If you windup and save the record, it is
re-built and added back in its changed form into the database,
all the terms being added into the index etc. It will not at
first appear any different on the screen. But if you leave the
record and do a new query which brings you back to it, you will
see the new version that you have edited.

 If you alter the record so that it contains coding errors, it
will not 'build' and hence will not be added back into the data
base. The previous record which you tried to edit will not be
altered or corrupted.

 An important point to remember is that the editor described
above is designed for use with an updatable, DB, system. If you
are working with a compressed, DA, system, then you should not
use this. The only situation in which you might want to do so is
if you just wanted to see what the original record looked like,
by pressing Control and F1. Then use F9 alone, so that the
system does not try to put the record back into the database. If
you try to put the record back, it may try to write it into any
other DB file you happen to have in the current directory, which
may not be what you want to do. So be careful.

The ability to go out into other programs from the database.
 A similar system allows you to re-enter the 'muscat' system
from within the database. You can type control F8 and you go
back temporarily into Muscat (while remaining within the CDS
2000 database). You will now receive a prompt discat>, to show
you that you are within muscat, but have arrived via the
database. A 'stop' here will take you back to CDS 2000.

 Now that you are in Muscat, you can do all the normal muscat
commands, for instance you can build files, or go into the 'q'
or query system. Since it is also possible to go into DOS or
MSDOS from within Muscat by typing DOS or MSDOS followed by the
Dos command, you could now go out into other programs. In
effect, this means that you can have complete flexibility, using
the Database as a shell, within which you can do anything else
which your computer is capable of.

41

PRINTING OUT MATERIALS FROM THE DATABASE
Sophisticated ways of printing out records.
 As we have seen, the text files are 'built' into a database.
They cannot be read in this form, and you therefore need to
unload them again in order to read them. This is done by
printing them. Since the original system was designed for
cataloguing, a good deal of attention has been devoted to
creating sophisticated ways of printing out the records. These
are described in detail in M.M. pp.72ff.

 As a start you can use standard print specifications which
will produce reasonably arranged records, placing the fields
described above in various positions either on a mainframe
terminal, on a microcomputer screen, or as print-out. The way in
which the record is to be printed on the screen in CDS is
declared by a print specification (pspec).

Printing out selected fields.
 For special purposes you may not want to have all the
fields printed out. For instance, you may want an index to the
places, that is of the *kl field, but not need all the other
material. By using the c-kill program (as explained in
MM.p.218), it is possible to leave only the fields that are to
be printed out. Some special purpose programs to do this are
listed in Appendix I.

Simpler ways of printing out records.
 There are two relatively simple ways to print out particular
records. The simplest, apart from using your 'print screen'
facility, is to use the control key combined with function key 7
(F7). This will print out on a printer the currently displayed
record.

 You can also 'mark' a set of records (which can be
either/both R and T records) and save these by outputting them
to a permanent file, as explained later. Then go into the muscat
system (either from within the database or outside it). Let us
say that you now have a marked file called sample.mks. You then
go (in muscat),

c-getmrecs sample to sample

(or use c-getdiscm if you are accessing a Direct Access
Database, that is a DA system)

c-print sample to sample1 (you can also use c-list to get

42

another version of the record, if you want)

You will now have an ordinary text file, called sample1.txt.
This can be printed out, either by using a word-processor or,
within muscat, by going:

msdos (or dos) print sample1.txt

An even simpler way of printing is described in Appendix V.

CHOICE OF INDEXING TERMS IN THE DATABASE
The indexing program to select terms for indexing.
 The computer has to be told how to extract terms from the
records. This is done by the INDEX program. (This is fully de
scribed in M.M.pp.154ff).

 The macro contains a number of words like 'about', 'after',
'again', which are not indexed, some 8O words in all. Words
consisting of only one letter are not indexed because it has
been found that, in general, they are low in information
content.

 All the fields are indexed, except the longer text (*t)
field. In the macro the line of the program which says "not find
*is s eq 'T'" makes sure that this field is not indexed. If this
were changed, all of the record would be indexed.

MODIFYING THE MACROS
 If you want to modify the macros, to add new fields, to
change the way the indexing works, or in any other way, please
see Appendices I, L and P.

WAYS OF ENTERING THE SYSTEM
 It is possible to enter the system in various different ways
and at different levels. These allow the user to set up some of
the parameters and defaults.

To enter 'muscat', 'muscatel', 'discatel' and CDS 2000.
 It is possible to enter 'raw' muscat by typing 'muscat' from
any directory. To enter elementary muscat (muscatel), type
'muscat sys el' from any directory.

 To enter 'discatel' (elementary discat, as described in
Appendix O), go into the 'Delbase' directory and type:

43

 muscat discatel

 To enter the Cambridge Database System (CDS 2000), where a
number of programs/macros are already in place, type:

 muscat cds

This takes you into the Cambridge Database System, and it is
then possible to enter the database itself in various ways. (If
you have a 'genlocked' system with a videodisc, you may want to
set this up as a way of entering the system. Separate
instructions for this will come with your 'genlocking' device.)

You will now receive the normal muscat> prompt. In this you can
build and add files for the database, and do all the other c-
 commands described above

 To leave any of these versions of muscat or muscatel, type
'stop'. Remember that when you come out of the Database you will
probably be in Muscat, so will need to type 'stop' to return to
the main computer operating system.

To enter the Database: the Database (DB) and Direct Access(DA)
systems.
 It may be that you decide to have separate DB and DA systems
(as described above). If so, when you are in the CDS 2000
version of muscat (having gone in with muscat cds, as above):

for the DB system type c-dbsys
for the DA system type c-disc

 To enter the database if you have gone into 'Discatel', type:

for the DB system type c-disc
for the DA system type c-dbsys

Turning the record numbers on and off.
 It is possible to have record numbers at the top of each
screen in CDS 2000. For instance, the first screen would then
have 'Record A:1' at the top. It is often useful for editing and
checking purposes to have the record number, but otherwise it is
not necessary. So the default is to have the numbers turned off.
If you want them turned on, type the entry command, followed by
'numbers on', for instance:

 c-dbsys numbers on

44

 If the default has been set with the numbers on, then type:

 c-dbsys numbers off

The record numbers will then be printed on the screen (or omit
ted) as the case may be.

Monochrome and colour screens.
 The CDS system comes in two forms, for colour and mono
chrome screens on computers. There are two aspects to this. The
first concerns the mode of display on the screen. This tends to
vary in attractiveness with the make of computer as much as
whether it is a monochrome or colour screen. If you have a
colour version, and want to set it to work in the monochrome
mode, type:

 c-dbsys with - or c-disc with -

as appropriate. This is a more satisfactory mode for a number of
colour screens and you should try it out.

 If the system comes up in the default of a monochrome ver
sion, then you will need to alter the 'macros' if you want a
colour default. Go to the appropriate set of macros
(\muscat\macros\cds or discatel or cdsi). You will find one or
two files called disc.txt and dbsys.txt. With your
word-processor, in non-document mode (i.e. with no control
characters), take out the '-' (minus) sign which you will find
in each of them after <with>. It can be put back if you want to
turn the screen back to monochrome.

 Secondly, the computer needs to know whether it is dealing
with a colour or mono system. The default is assumed to be a
colour screen, since most computers now have these. But if this
is not the case, you will need to make a change. In the
sub-directory containing the macros through which you will enter
the system (\muscat\macros\cds or discatel or cdsi, depending on
which you enter) you will find the dbsys.txt and/or disc.txt
macros which were mentioned above. These need to be edited as
follows with or without the letter z, as follows:

monochrome colour
<with> <with>
z
! !
disc file.... disc file....

By changing the dbsys.txt and disc.txt macros in this and other
ways, you can alter the various defaults set when entering the

45

system.

Turning the videodisc on and off.

 Depending on the default setting in c-dbsys, your system may
assume that you are linked to and want to use a videodisc. If
you find that you are assumed to want a 'genlocked' version, but
want to turn the videodisc off for a while, then type:

 c-dbsys mode 0

 If you find that the videodisc picture is not shown on the
screen, but would like it to be shown through the genlock, then
type:

 c-dbsys with v

One-screen and two-screen versions.
 If you have a computer linked to a videodisc player by a
'genlocking' (Videologic 'Mic' card) device, then it is possible
to see both text and picture on the same screen. It is quite an
expensive option, however, because of the cost of linking de
vices.

 It is possible to run the CDS in a two-screen version, using
your normal computer screen for the text, linked to a videodisc
through an RS232 cable, so that the picture is shown on a TV
screen. To use this two-screen version most effectively, type:

 c-dbsys opts 2

 The two versions of the program to run the one-screen and
two screen versions are held in the \muscat\mods directory as:

disctwo.cin - for two screen version
discmic.cin - for one-screen (genlock) version

Currently a copy of disctwo.cin has been made and called
disc.cin. This is way drives the system. If you want to use the
on-screen version, you should copy discmic.cin to disc.cin. (Do
not use re-name, as it is necessary to keep back-up copy of the
original, so that you can easily change back).

The number of records to be retrieved.
 It is possible to limit or expand the number of records to
be retrieved by specifying the number as you enter the system.
The default is one thousand (1000) records, so that, for in

46

stance, in a structured query you will sometimes get the message
'1000 out of (say) 1775 records retrieved.' If you want to set
the number of records to be retrieved at more or less than this,
type, for example:

 c-dbsys opts z2000

This will set the limit to 2000, rather than 1000 for the ses
sion.

Selecting which database to enter
 If you use the ordinary c-dbsys or c-disc entry, you will go
into your normal (default) database, which is DB.DA in the 'cds'
sub-directory of Muscat. You can, however, have as many
databases as you like, and they can be in any directory. It is
possible to specify an alternative by going:

 c-dbsys on (database name)

For instance, if you have a database called book.da, which is in
a sub-directory called \work, you would type:

 c-dbsys on \work\book

Note that the extension .da can be left off in this command. The
computer assumes that a database will have this extension. It is
thus essential that all database files have this extension.

 It is, of course, possible to combine these various op
tions. If you find that you are using a set of them very often
and want to make them the defaults, you can alter the dbsys or
disc macros.

Selecting which set of macros and which database to use
 It is possible to be in any directory and to go into the
appropriate set of macros and database in another directory by
using the system.txt macro.

 If, for instance, you were in a directory called 'letters'
and you wanted to enter the database and set of macros kept in
the \muscat\cds sub-directory, you would type the following:

muscat cds

c-system \muscat\cds

47

This would take you into the appropriate set of macros.

Likewise, using discatel, you could type, from any
sub-directory:

muscat discatel

c-system \video

Then you would be able to use the macros in the sub-directory
\video.

48

 CHAPTER FOUR. SEARCHING THE DATA
CONTROLLING THE SYSTEM
The first choices on the introductory page.
On entering the database system, you will be presented with the
following page:

Welcome to the Cambridge Database System

Press H for help
Introductory text:
Tutorials:
Contents:
Free text query:
Structured query:
Both free text and structured query:
The first three of these are fairly self-explanatory. Some pre
liminary advice on how to move the cursor around the screen and
make selections is given by pressing H. Certain introductory
information is given in the introduction. Tutorials can be built
up on selected topics.

Controlling the screen and making selections.
 Each screen you see contains several little boxes, or
'icons', one of which will be flashing or more highly
illuminated than the others. You can change which box is
'active' (i.e. flashing or highlighted) by pressing the four
arrow keys which are together on the keyboard. If you press the
'Enter' key (the large key which is on the right, where a
carriage return key would be on a typewriter), you will select
the active box. This is one way to make a choice to do
something.

 A box is often accompanied with a word beginning with a high
lighted letter in a different colour or shade. Pressing the
letter key selects the box. For instance, 'F' or 'f' will select
'Free text query' on the introductory page. This is the other
way in which to make a selection or choice.

49

Moving back up the system.
 Imagine that you start at the top of the system, and when
you select a box, you usually go down a particular path or
branch of a tree, each subsequent choice taking you down a
further branch. To return back up to the previous level you
press 'Esc' , or select the box with 'Esc' against it. Thus, if
you are lost, go back to the start with Esc. In essence then,
'Esc' will return you to the screen from which you made the last
choice, while the boxes and letters will take you downwards or
sideways through the choices.

 It important to be careful not to press too heavily or long
on a key, as it may 'repeat' and you may be taken beyond the
point which you hoped to reach.

 To leave the Database system, return to the introductory page
where 'EXit' appears on the bottom menu, and type the letter x.

 If you are unsure of what particular choices on the screen
mean, if there is a 'Help' key, this may be selected by pressing
on the box or pressing the F1 function key' and you will be
given a short description of each choice.

TYPES OF QUERY
Types of searching system.
 There are four ways of finding materials with this system,
by a hierarchical table of contents, by putting in a string of
words through free text searching, by making choices from lists
of words and combining these choices through 'structured'
queries, and finally by combined free text and structured
queries. Let us look at each of these.

A hierarchical table of contents.
 Select 'Contents' from the introductory page, then your are
first presented with a choice as follows:

By name of collector or author

By medium or source

If you select 'name', you might be presented with a list of the
people whose materials are on either the videodisc or the

50

computer disc. Then, if you choose one of them, a list of their
various works could be presented. If you select one of these, a
list of the short captions which describe each item in that work
is presented, and you can choose to see any of these.

 Alternatively, you could select 'medium or source', which
would then take you to a list organised by photographs, with the
authors of each set, which could again be selected. This hierar
chical contents system is the nearest equivalent one has to a
table of contents in a book.

 In fact, when you select an author or source, you set an
'embedded query' running, a query which you could set up for
yourself once you know how the system works. The way these
embedded queries work is described at the end of Chapter 2
above.

 The indexing power of the computer, however, allows you to
explore the materials in two other ways, which take you to the
exact record you are looking for. This provides a set of
combined indexes which is like a well indexed book having a set
of indexes of place, person, subject, date, ethnic group, medium
of recording. Then, having such a set of indexes, the computer
makes it possible to combine them in any conceivable way, and
finds the appropriate image or text more or less
instantaneously.

Free text queries.
 Free text queries allow you to put in a string of words which
are matched against the records, and the best matching record is
given first, the next best next and so on. What 'best' means
will be explained later, but an example of such a free text
query would be:

Free text query> green and blue hats

This can be made much more elaborate, or simpler.

 These queries will search the 'caption' or short text part
of a record, and the other keyword fields, except the longer
text field. They are thus simple to make and serve for many
purposes. If you select 'Free text query' in the initial page
you can make such a query. Since the words in the index are
'suffix stripped' (explained in Appendix G below), it does not
matter whether you put in 'dance', 'dancing' or 'dances'; all
references to dance will be found.

51

Structured queries.
 These are queries of the form 'and' and 'or'. You are
basically invited to begin to build up a set of query terms,
selecting from diverse lists of possible terms under various
headings. For instance, you might choose a year, a person, an
ethnic group and a medium as follows:

1939 Bower Zemi Photographs

such a query would find all the photographs of Zemi Nagas taken
in 1939 by Ursula Graham Bower.

This is therefore a much more precise and powerful system. It
delimits an area of interest. It operates on all the major
fields other than the caption field.

Combining free text and structured queries.
 Since the two types of query complement each other and act on
different fields, they can be combined. In the example above,
you could thus, by choosing 'Both free text with structured',
enter the following:

Free text query> blue green hats

Structured query> 1939 Betts Zemi Photographs
This would locate any photographs of blue green hats taken in
1939 by Betts among the Zemi Nagas.

The base page.
 The choice of free text, structured or both free text and
structured queries leads to the appearance of a 'base' page,
that is a screen to which you will frequently return. Each query
will produce a slightly different base page initially.
Furthermore, the base page increases in complexity as more
features of the system are used.

 If we take the 'free text' option as an example, it starts
with a page which merely allows you to ask for a free text query
or alter the retrieval style. When you ask a query, the base
page then expands to allow you to inspect the free text query.
When you have looked at some answers and 'marked' some of them
as relevant, it allows the new option of keeping and/or
expanding the query. If they are kept, you then have the option
of seeing the marked items.

 The meaning of all these options will be explained later.

52

The important point is that there is a 'base' page of increasing
complexity which exists at the next level down from the 'intro
ductory' page.

FREE TEXT QUERIES AND HOW TO MAKE THEM
How to make a free text query.
 This is relatively simple. Having selected the free text
query system and then selected Free Text Query, you are given a
prompt at the top of the screen:

Free text query>

at which you type in one or more words. The distinction between
upper and lower case is ignored, so proper names and places can
be in either. You will then be shown a screen which has among
its captions the option of 'Inspect the free text query' and 'Go
to first item'. If you would like to see how many times the
words you have asked for appear in the whole database, you can
select the 'Inspect the free text query' choice. You would then
get, for example:

blue 47
green 84
hat 275

Against each is a box allowing you to delete this term from the
query. This may be necessary if you have chosen a term that is
so common in the database that to include it in the query would
give too many answers.

 If you are satisfied with the query, it can then be run by
selecting 'Go to first item'. After anything from a tenth of a
second to half a minute, depending on the complexity of the
query and power of the micro-computer, you will be shown the
best matching record. You can then choose the next record by
selecting 'new Item' at the bottom of the screen.

Order of being shown records.
 The records which are found in free text queries are
presented to the user in a probable order of usefulness as
answers to the questions asked. For instance, if you have asked
for four words, those records indexed by all four will come
first, records indexed by only one will come last, and the rest
will be in the middle.

 The precise ordering of the records depends upon various
information retrieval criteria such as the frequency of the

53

words occurrence in the whole database. Words which are used
thousands of times are likely, all other things being equal, to
be less useful than words which are only occasionally used;
'shaman' is probably more useful than 'man'. (For a fuller
description of probabilistic retrieval, see Appendix. C).

STRUCTURED QUERIES AND HOW TO MAKE THEM
Setting up a structured query.
 If you select the structured query method, you will be
offered the following choices:

 Year
 Other date
 Person involved
 Locality name
 Ethnic group
 Medium of recording
 Source of material
 Videodisc frames

We may look at each of these in turn, starting with what would
happen if you selected videodisc frames.
Finding the record relating to a videodisc frame number.
 It often happens that you have seen a picture on the
videodisc and want to find out what it is. By selecting
'Videodisc frames' you are invited to "Enter a frame number". If
the enter key with no number is typed, you will be taken to a
list of frame numbers, starting at the lowest. You can go up and
down this and choose to see any of the numbers.

 If, on the other hand, you wanted to find the record describ
ing the image on videodisc frame number 625, type '00625' in
answer to the prompt. As explained earlier, the computer assumes
all numbers have five digits, so you need to make up the number
to five digits by adding the appropriate number of leading
zeros. For example, you might have 00007, 00015, 00625, 02751.

 If you type in 00625 you would then be taken to a page of
numbers. In this case, for instance, you might have a page which
went:
00625
00626
00627-00629
00630 and onwards....

 By selecting a number, you are taken to the record associated
with that videodisc image. You can then go to the actual image

54

if you like. Frequently, especially with sets of still
photographs or moving films, you will be given a range, as in
627-629 in the example above. Selecting this will take you to
the start of a moving film or photograph set.

Finding dates; spans and years.
 There are two principal methods of finding dates. The first
is to set up a query by asking to see all records which fall
within a specified year. This is done by selecting 'Year'. You
will then be taken to a screen which asks you to select a
certain year range, for instance:

Up to 1879
1880 - 1919
1920 - 1969
From 1970

Choice of one of these will take you to a screen which allows
you to select specific years. As with all the structured fields,
it is possible to build up a list of the 'or' variety. Thus you
could select 1935 by itself, or you could select 1935,1936,1937.
The effect of the latter would be a query of the form: find
records with the dates 1935 or 1936 or 1937. (You select by
pressing once on the appropriate box; pressing on the same box
again cancels that selection. It is thus a 'toggle'.)

Such a query would now find every record which had the year date
1935 or 1936 or 1937 in it (whether more precise days or months
were specified as well as the year or not).

Finding dates; days, months and years.
 It may well be that you would like to look for more precise
dates. This can be done by choosing 'Other date'. On selecting
this, you will be requested as follows: enter as yyyy or yyyy/mm
or yyyy/mm/dd>

This means that you can enter, for example, any of the
following forms:

1934
1934/12
1934/12/20

 In other words you can put in just 1934, or December 1934
or the 2Oth December 1934. When any of these have been entered,
you will be taken to a list of dates. For instance, you might
have asked for 1934/12/20 and be shown:

55

1934/12/20
1934/12/22
1934/12/27
1934/12/30
1935
1935/01

By selecting a date, you will set up a query to find all records
of that date. Or you could select a series of dates, of the form
'1934/12/20 or 1934/12/22 or 1934/12/27'.

Finding persons.
 By choosing 'Person involved', you are invited to enter a
surname. It is possible to type in a whole name, or just one or
more letters of the alphabet. You are then taken to a list. If
you had typed in, for instance, Bower, the following might ap
pear:

Bower
Bower/ Ursula
Bower/ Ursula Graham
Bower/ Mrs Graham
Bowers
Brown
Brown/ Col

Again you can select either one name, or a list of names, such
as 'Bower or Bower/ Ursula or Brown/ Col'.

Finding ethnic group.
 On choosing 'ethnic group' you are asked for a name of an
ethnic group or tribe. Having typed in a name, or even a single
letter of the alphabet, you are again taken to a list. The
procedure of choice is then exactly the same as person.

Locality or place.
 On choosing 'locality', you are asked for a name, at which
you can type in nothing, one or two letters, or a full name. If
a full name is given, you will be taken to the list of place
names, as in person and ethnic group, and can make a selection.

 It may be that you will have data where synonyms need to be
indicated. An example of how this works can be taken from one
application of CDS, namely to the data about the Naga tribes of
the north-eastern frontier of India.

 Since Naga place names can be spelt in many different ways,

56

it is necessary to provide a kind of synonym list. Supposing
that a place was usually called Aopao, but that there were a
number of alternative names used, including Pongyo. If you typed
in Pongyo, you would be taken to a list with the first item
'Pongyo = Aopao'. This tells you that the standard name for
Pongyo is Aopao.

 If you just want to see where it is on the map, and to find
what other synonyms there are, select this. But if you want all
references to the place which is sometimes called 'Pongyo', you
would go out of the list of place names, and then select
'Aopao'. This would then find all places called 'Aopao', and all
variants of that name, including 'Pongyo'. When you come to look
at a map you will find the standard name (Aopao) on it.

 This synonym list was set up automatically, using a set of
computer programs, partly on a mainframe computer, partly on a
micro. Details are available from the authors of this manual,
but they are not described here since they are specific to a
particular set of data and would need to be considerably
modified for any other data.
Medium of recording.
 On selecting medium of recording, you will be given a choice
of the different media, which can be selected individually or as
a list. An example would be as follows:

film (colour and black and white)
photograph (colour and black and white)
sketch (sketches, paintings, drawings)
sound (audio recordings)
artefact (three dimensional objects)
map (sketch map)

Source of material.
 If you select this choice, you will be taken to a list of the
names of archives, museums, libraries and private individuals.
These are taken from the *acq *p field, in other words the ac
quirer of the materials. By selecting one and combining it with
other queries you can, for instance, see all the spears in a
certain museum.

Deleting or modifying the structured query.
 You select a query term by pressing on the appropriate box.
In order to delete that term if you change your mind, press on
the same box a second time. In other words, the box is a
'toggle', that will select and de-select. This can only be done

57

while you are still on the page with the list of terms. If you
want to delete a whole query or set of terms, return to the
initial structured query choice page (with the boxes for Person,
Locality etc.). Then type 'D' or the 'Delete' box at the bottom,
and this will clear away the whole structured query.

 'Inspect the Structured Query' allows you to see what your
current query is, add to it, or delete it, as described above.

Running a structured query.
 As you select different fields and add in terms, you will
begin to build up on the right hand side of the screen a
structured query of a certain form, for example:

 1934 or 1935 or 1936 and photo or film
and Konyak Nagas or Zemi Nagas

The query can be run, by returning to the 'base' page and then
selecting 'Go to first item'. As well as placing the first
answer on the screen, you will receive a message at the top of
the screen stating how many records which answer the query have
been found, thus:

125 records retrieved

That means that another 124 are awaiting inspection. The conven
tion is that only 1000 records will be retrieved. If more than
1000 answers were found, a message will appear to state that:

1000 out of 2540 records retrieved.

It is assumed that the normal user would grow weary long before
completing a search of one thousand records.

 It is possible to change the number of retrieved records, as
explained at the end of chapter 3. Thus you could limit the
retrieved number to less than one thousand, or increase it
beyond that limit.

COMBINED FREE TEXT WITH STRUCTURED QUERIES
 By selecting 'B' or the appropriate box on the introductory
page, it is possible to combine free text and structured
queries. For instance, you could use the structured query system
as outlined above to select a year range and a medium. Then use
the free text query to put in a few words of free text. You
could, for instance, ask to see carvings of houses (free text)
in photographs in 1934 (structured).

58

THE WAYS OF LOOKING AT THE ANSWERS TO QUERIES
The three modes of looking at the found records.
 So far we have assumed that a user will want to go straight
to the full record, which describes a visual image or a piece of
text. This is 'record retrieval' style. It is possible to use
other methods of looking through a string of records as an
alternative to this.

 When faced with a screen which gives you the option to
'Alter the retrieval style' you can select that choice. You are
then given two further options: to select 'Data retrieval' or
'Caption retrieval'.

Data retrieval style.
 If you select 'Data retrieval', instead of being taken to the
record describing an item of data (a picture or a text record),
you will be taken to the data itself.

 If you want to see the record by which you have entered the
image or page of text, select 'r' from the menu. If you want to
return in data retrieval mode after looking at the record return
to the data level by typing 's' for show.

 You can move through the data in two ways. If there is a
'Prev' or 'Next' box on the menu bar, then you can go to another
item of data (e.g. another photograph) directly by selecting 'p'
or 'n'. This would be the case, for instance, if there was a set
of photographs referred to in a record.

 Or you can go to a new Item of data by selecting 'i'. This
might then take you to some more film, a page of text, another
still image, which might in turn contains further Next and
Previous choices.

 The items can be 'marked' with the appropriate box and the
menu bars turned off and on with the 't' or text on/off choice.

 Quite often you will be taken to what is obviously a record
describing a set of images or pieces of moving film, each of
which has a separate caption. Here you choose the one you want
to see by selecting a box, which takes you to the data,
consisting of a still picture or moving film.

 If you want to see the record by which an image or moving
film or piece of text is indexed, type 'r' for return. You can
go back to the image with 's' for show. If you find yourself at

59

the level of the records, and want to go on looking at images,
go 's' to go back into that level.

Caption retrieval style.
 If you select 'Caption retrieval' you are in 'caption re
trieval style'. If you have set up a query, and now select
'Caption list' from the menu, instead of being presented with
the first record, you will be given a screen of short captions,
for instance:

A bow and arrow for shooting at fish during a fishing trip.
A young man out fishing, using a bow and arrow.
A group of men and women out on a fish poisoning trip.
A fish trap used for catching fish after poisoning.

 Each short caption has with it a box which allows you to
select it; in which case you will be taken again to the full
record from which the short caption was taken. In this way it is
possible to scroll quickly through pages, referring to dozens of
records. The short captions are always automatically truncated
to 69 characters, i.e. one line on the screen. If you 'mark' a
record (as explained later), an asterisk appears against the
marked record in the caption list.

 In order to return to the 'Retrieval by record' style, you
again select 'Alter retrieval style', and select 'Retrieval by
record'.

MOVING BETWEEN RECORDS, IMAGES AND TEXTS
Moving from record to record.
 Let us assume that you have asked a query and gone to the
first answer. You will then have a menu bar at the bottom. Among
the items on this will be 'new Item'. This will take you to the
next record answering the query. If you go to that, a new possi
bility appears on the menu bar, Previous. This takes you back to
the previous record, already seen.

 If you go back to that, you now have a further possibility,
'Next'. That will take you on to the next record, i.e. a record
that has already been seen. If you want to skip to a new, as yet
unseen, record, you select 'new Item'. Once you have a list of
records that have been seen, a further possibility opens up,
namely 'First'. This will take you back to the first record you
saw while doing the present query.

 This can be illustrated thus:

60

record 1 selecting 'new Item' takes you to...
record 2 selecting 'previous' takes you to...
record 1 selecting 'next' takes you to...
record 2

or
record 1 selecting 'new Item' takes you to...
record 3 selecting 'first' takes you to...
record 1

Seeing a picture or piece of text.
 Let us assume that we are now at the level of a specific
record. This may be complete in itself, or it may refer to an
image on the videodisc or to a piece of text. If this is the
case, there are two ways of moving to the image or text.

 If there is only one image or text referred to, a 'Show'
request will appear on the menu bar. By selecting this, you will
be shown the relevant image or page of text. To return from the
image or text, you type r, for Return.

 If there are several cross-references to images or texts, you
reach them in a different way. In this case, several highlighted
boxes (icons) will appear on the screen and by selecting one,
that particular image or text will be shown. This is the case,
for instance, where there is a general description of an event,
of which there is a set of discrete images, each with its
sub-description.

 For instance, there might be a record as follows:

The Spring festival dance at Longkhai village in April 1937
 - getting ready for the dance
 - dressing of the boys
 - dressing of the girls
 - dancing - the drummer playing
 - further dancing

You would have a series of choices, and could see each section
as you liked, going straight to the dance, or the drummer.

 It should be noted that occasionally there will be a list in
which there are some lines where there is a box with no text
beside it. This means that the general description at the top of
the record is an adequate description for that entry: thus the
record above might have looked like:

The Spring festival dance at Longkhai village in April 1937

61

 * getting ready for the dance
 * dressing of the boys
 * dressing of the girls
 *
 * the drummer playing
 *

Examining moving film.
 If you are taken to a piece of moving film by any of the
retrieval strategies, you will first see a still frame with
'Film: (first frame on show)' at the top and at the bottom a
menu bar with Help, Return, Show and Mark.

 If you want to see the film, press 's' or the 'Show' box and
the film will be shown through at normal speed, with a message
at the top saying: 'Film starting at 2O55O and playing
through...' (or whatever the appropriate number is). On the menu
bar at the bottom will now appear Return, Stop, Go from start,
Text off.

 By pressing 't' for text off/on, you can turn the overlay
text off and on. If you reach the end and want to see the film
again, press 'g' or the 'Go from start' box. If you press 's' or
the Stop box, the film will be stopped or stilled at that frame
and you will be given the frame number at the top.

 On the menu bar at the bottom appear the following choices:
Return, Go, Backwards, Speed 1, Prev frame, Next frame, Mark.
You can mark the still frame in the usual way. You can move
forwards (step through the film) or backwards with 'n' and 'p'.
If you want to change the speed, type '1' and you will be in
slow motion (typing 2 will restore you to normal speed). If you
want to see the film backwards, press 'b' and then 'g'. Select
'f' and then 'g' to set the film moving forwards again.

Reading texts.
 If you are taken to a text record when you press 'Show', for
instance a paragraph of a diary or book, it is possible to read
through the previous and next paragraphs, even to read the whole
work from beginning to end, by using the 'previous' and 'next'
boxes (or typing 'n' or 'p'), at the bottom of the screen.

 If you do this, it is possible that you will find flashing
boxes embedded in the text. These also appear in records. These
are cross-references to images on the videodisc. By selecting
them, you will be taken elsewhere, to a photograph or sketch
made on that day. Having seen the cross-reference, an 'r' or

62

return will bring you back to the paragraph you left.

Listening to sound.
 A videodisc can also contain sound; speech, music and other
material. In order to find this sound, you would need to type in
a query with such words as song, music, sound, interview. If you
come to a record which clearly describes sound, you select the
'show' box on the menu bar. This then presents you with a blank
screen with another menu bar with a 'show' box on the screen.
Pressing this starts the sound. If you want to interrupt the
sound in the middle, type 'r' for return while it is playing.

EXPANDING QUERIES; THE MARKING SYSTEM
 We have seen that answers to your questions will be arranged
in what the computer thinks is probably the best way to answer
the query. This gives a first approximation, but there is also
an option to enter into an interactive dialogue with the
computer to improve the query. This is known technically as
'relevance feedback with automatic query expansion'. It is this,
along with the combined free text and structured system, which
makes the database unusually powerful.

Seeing the terms by which a record is indexed.
 When you have been shown a record, one of the possible fea
tures to select on the menu is 'Terms'. If you select this, a
complete list of the terms by which that document has been in
dexed will be shown.

 It is possible at this stage to add terms from this list to
the query, which can then be re-run with an 'expanded query'.
For instance, you may be looking for 'blue green hats' as the
free text query. You may then be shown the first record found.
This may show a list of indexing terms that includes bamboo,
hat, tassels and so on. You might think that it would be
interesting to add in 'bamboo', and re-run the query. This can
be done. This is a simple form of query expansion which acts on
a particular record.

 A more powerful version of this, acting on a set of selected
records, is called 'full relevance feedback and query
expansion'.

Full relevance feedback; marking the records.
 This only works in the 'free text' retrieval system. When

63

presented with a record, one choice on the menu is the word
'Mark'. If you select this, it is noted that the record has been
'marked'. Basically, you have said that this record is indeed
the sort of thing you were looking for, it is indeed a
'relevant' answer to your query. (If you change your mind, you
can select what is now an 'unMark' choice, in which case it will
no longer be marked.)

 You then move to the next record and can again mark the
record if it is a good answer to the question. Thus you go
through, putting into a special file a set of 'marked' records.

 When you return from looking at particular records to the
'base' page, two further choices will be offered. One is to
'Keep the marked items'. If this is selected, a request for a
name for the file of marked items is made. You might have marked
a set of photographs about fishing, for instance, and title this
'fishing'.

 Having given it a title, you will be given a new option,
namely 'See the marked items'. If this is selected, a short
caption list of the marked items will be presented. In each
case, an opportunity is presented either to see the marked item
again, or to delete it from the marked items file.

 If you go into 'caption retrieval' mode, or have been working
from this mode, you will find that as records are marked they
are given an asterisk on the list.

 Supposing there is now a marked file containing six answers
to a query about fishing. You may want to improve the query.
This is done by selecting 'Expand the query'. The computer will
then take all the records marked as relevant answers to a query
and examine them. It will print out a list of the terms by which
they were indexed.

 This will be presented to you in an order of probable useful
ness. In other words, terms that are very highly associated with
the marked records and occur infrequently in general in the
database, will be presented first. You can add in any of these
terms to the original list and re-run the query. This is query
expansion, following relevance feedback.

 An example would be as follows. Supposing you had marked four
records as relevant. You might find a list of terms as follows:

red freq 47
river freq 96
konyak freq 250
stone freq 35

64

bamboo freq 276
man freq 876
blue freq 36
house freq 125
woman freq 176
bridge freq 24
jump freq 36
head freq 230

This is an over-simplified example; the list is likely to be
longer and more elaborate. But what it shows is a pattern. The
words 'red', 'river' and 'konyak' have been found in all four of
the relevant, marked, records. They are thus placed first, with
the one that occurs least frequently, namely 'red', which only
occurs 47 times in the whole database, first, then river, then
konyak. Then we have the terms which occur in three of the re
cords, namely stone, bamboo and man, again placed in order, with
the least common first.

 What the computer is doing is showing statistical connections
to other words. It makes it possible to see, in large data sets,
that there are connections of a kind you might not have noticed
by merely looking at the separate records. If you decide that
the suggested connection is interesting, it can be added in.
Thus you could add in 'red', 'river' and 'konyak' and having
expanded the query, re-run it. You are now likely to get a
somewhat different set of records which may provide new, and
possibly more fruitful answers. These again can be marked and
expanded.

 One word of caution. If you are going through a set of
records and marking a large number of records, you may suddenly
receive a warning that you are running out of space. This
happens because of the following. If you mark a record (but not
a picture), then the computer stores all the terms by which that
record is indexed in core. If you mark a large number of
records, say a hundred or so, they may generate many terms. This
may use up all the available core.

 If this becomes a serious problem and you want to allocate
more work-space, this can be done by following the instructions
about workspace allocation in Appendix F, under 'Calling
Muscat'.

 This is thus an interactive process of searching, using the
reasoning and associative knowledge of the human, and the speed
and statistical power of the computer, alongside each other.

 For many kinds of research, whether in anthropology,
medicine, sociology, history or elsewhere, this is a powerful

65

research technique, based on very simple premises.

SETTING UP FILES OF MARKED ITEMS AS TUTORIALS.
 We noted that 'query expansion' could only be done with the
free text query part of the interrogation system. On the other
hand, there is another use for the 'marking' system which ex
plains why one can 'mark' records in structured queries, and
even mark bits of moving film or photographs, or sound.

 It is possible, using the marking system to set up a file of
records which may be used to create pathways through the materi
als. These may form the basis for files which, through editing,
are used as future tutorials. We may explain briefly how this
can be done.

Two forms of marking and captioning.
 We have seen above how to mark records and then to keep them
and give the file a title. You may also want to mark the images
or even texts themselves. In this case, having found the image,
for instance a photograph, you select 'mark'. On this occasion
you are asked to provide a title. You then type in a short de
scription of the image, which is stored in the marked file,
rather than the record itself. Thus you might have a list of
marked photographs with captions:

a good photograph of a man cutting wood
some men dragging a huge pole through a forest
an axe blade
men throwing logs up onto a pile of wood

These can then be saved, given a file name, and examined (seen
or deleted), as with a normal marked file. It is possible not
only to mark sections of moving film, but also to mark single
frames of such film, selected from a moving sequence.

Saving, editing and re-entering the marked file.
 When you have marked a set of documents and kept them with a
name for the file, you will see a choice called 'Inspect marked
file'. If you select this, you will be shown a list of the
marked items. On the menu bar at the bottom two new choices,
Input and Output will appear. If you want to save your set of
marked records to a permanent file outside the database, select
'output'. You will be asked for a name. Choose a name, and press
carriage return. The set of marked records will then be written
to a permanent file, with the extension .mks, in whatever
directory you entered the system from.

66

 When a marked file is 'output' in this way, it is deleted
from the database. But if you want to retrieve it, or retrieve
other marked files, you can select 'input' at the bottom of the
screen, or the 'Input marked file' choice on the base page
screen. If you select one of these, you will be asked for the
name of the file to be input. When you specify a name, that file
of marked items will be added in.

 Thus you can output and input sets of marked items from a
library of files that you build up on your hard disc.

 You may find it difficult to remember the names of all your
marked files. One easy way to see what is in your library, is as
follows. While in the database, go into muscat with the Alt key
and F8 key combined. You can now do any of the MSDOS or DOS
commands, by prefacing them as appropriate with msdos or dos.
Thus, if you wanted to see what was in your current directory,
you could type, for example:

msdos dir /w (which will give you a wide listing)

When a file has been put out of the database in this way, you
can turn it into an ordinary muscat file:

In the case of a db.da file type:

c-getmrecs filename to filename

Or, if you have compressed your material into a direct access
(DA) system, then type:
c-getdiscm filename to filename

It is then possible to turn it into a text file by typing:

c-print filename to filename (or c-list)

You could then edit it (within the same set of conventions and
print commands), and build it again and give it the extension of
.mks and add it back into a database. This is a way of building
up your own tutorials.

67

 PART B: APPENDICES
APPENDIX A.
Martin Porter
 Technical details concerning cross-references.
 The cross-reference may take one of three forms:

\A.n\ (n . 0, structure query only)

\A.0\ "s" (s is some text, free text query only)

\A.n\ "s" (structured and free text query)

 You can then select one of these, which will take you to the
standard page for query entry. If \A.n\ is supplied with n > 0,
structured queries will be enterable, with record A.n giving the
base record for controlling structured query entry. If "s" is
supplied, free text queries will be enterable, and analysed
according to the contents of string "s".

Contents of the string "s".

The string "s" can contain:

s - stem with a stemming algorithm

v 's' - treat all characters except alphas and those in 's'
 as gaps

i 's' - treat characters in string 's' as ignorable

j 's' - treat characters in string 's' as ignorable escapes

g 's' - treat characters in string 's' as gap characters

p 's' - use 's' as a prefix for extracted terms

l - force lower case

u - force upper case

c - force initial capital

 This follows the usages in the i-directives in INDEX. Note
that a v-option must precede any i-,j-, and g-options; that the
l- and u-options should not be used together, that a c-option
forces initial capital after an l-option has put the whole term

68

into lower case, and that stemming only takes place on lower
case words, so that it is usual to use the s- and l-options
together. By default, space is a gap character, while all other
characters go to form terms, and the prefix string is null.

APPENDIX B
Some suggestions on data entry and error corrections.
 If you are engaged on a large data entry exercise, you may
wish to consider various ways in which to speed up the entry of
text.

 There are two aspects to this. There is firstly the entry of
the text or data itself. Here the main choice is whether to put
the material in by typing it, or have it optically scanned by
using some form of optical character recognition by computer
(OCR). The cost of the latter method is dropping rapidly and the
efficiency increasing. A number of devices can now be attached
to ordinary micro-computers in order to achieve this.

 Once the data is in, or while it is going in, the field
codes ('tags' or 'flags') need to be added. How this is to be
done will depend on many factors, but four methods can be
mentioned.

 In all these methods, remember that it is essential that the
final text of the material to be put into the database must not
contain the control characters which are added by a number of
word processors. To avoid these characters being included, de
pending on your word processor, select the 'non-document' mode
when you start to edit, or the 'non-formatted' mode when you
end.

Simple input method.
 You can just type in the appropriate codes as needed, for
instance *kp, *kd *z etc. This is useful if you are editing a
file which has already been created, for instance a long set of
texts which have been generated by optical character recognition
input. Obviously, if you are using this method, the more
'mnemonic' or memorable the codes are, the easier; for instance
*p for person *d for date. Likewise, the shorter the codes are,
the quicker it will be.

69

Setting the function keys.
 If you are using the method above, you may find it quicker
to set up the function keys on your micro to correspond to the
most frequently used codes - thus F1 might correspond to *kd
etc. Setting up function keys will be explained in the manuals
for your word processor.

Setting up a menu of codes.
 If a set of records in a file has a fairly standard set of
fields with associated codes, the quickest way (and also a
useful reminder to include material under all the fields), may
be to set up a small file on your computer which provides a
'template' of the codes. This can then be inserted simply each
time you start a new record by using the 'insert block' or
'insert file' command on your word-processor. Thus you would be
given a series of codes starting each line, and then type the
data alongside these. CDS does not object to empty fields, so it
does not matter if not all the fields are filled with data.

Setting up a screen with 'boxes' for data.
 It is possible to take the previous method one stage further
by setting up more elaborate 'boxes' for data input. These have
the field type specified, and allow you to type in a restricted
or unlimited amount of material into each 'box'. The 'card
image' on the screen would then have as its output a file with
the appropriate codes added in to the record. A way to do this
is available in the CDSi software available with this package,
described in the accompanying CDSi manual.

A method of coding longer texts.
 As larger quantities of texts become available through
optical character recognition input and from previous
machine-readable files, a method of preparing this for input to
the database with minimum coding is helpful. One such method is
described in Appendix H, namely a utility for allowing one to
add codes within a longer text and then run a program to
automatically extract the coded items, as appropriate. This
saves a great deal of double typing.

Some guidance on how to correct errors thrown up by 'build'.
 In a number of checking procedures, and particularly in

70

'c-build' you are bound to find errors. The error messages take
a form such as the following:

Line 155 Character t (at position 8) found while reading integer
Line 548 Character p (at position 16) found while reading
integer
Line 559 Character k (at position 10) found while reading
integer

This tries to specify as clearly as possible the error, but, of
course, the error may be caused by an earlier mistake. In
particular, hundreds or thousands of errors may be caused by one
faulty 'global' setting using the 'setting constants' method.

 In order to look at the precise error, you need to find the
offending line. If you have a line editor, you can use that,
since it will have a 'move to line n' command. Or you can use a
word-processor. Each word-processor is different and the
documentation about line numbers is often weak. You can often
not issue a command to find a line number. But the line-numbers
are indicated.

 To give one example, from the word-processing system 'Word
star'(c). In this word-processor, if you enter in what is known
as 'document' mode, you will find that the line-numbers start
afresh each page. If you wanted to find line number 247 in this
mode, it would be best to set the page length, say to 100, then
move to the 47th line of the third page. A simpler method is to
enter in 'non-document' mode. The pages are not split up, and
with a certain amount of 'help' on, you will see the lines at
the top of the page. You can rapidly page through to the right
line number and make the correction.

APPENDIX C
The basis of the probabilistic retrieval system.
 The 'probabilistic' retrieval system is only associated with
the 'free text' query system. 'Structured queries' are
equivalent to the relational database models upon which most
databases work, namely exact matches. Since probabilistic
retrieval is an important feature of this system, it is worth
looking briefly at the probability theory model of information
retrieval.

 In essence one puts in a list of index terms and asks for

71

close matches to this list. The answers with the best match are
shown first, followed by those with a less close match and so
on. But what does one mean by a 'best match'?

 Each term in a query is first given a weighting, described as
"a kind of measure of importance" (MI,p.138); the weights are
recomputed each time a new query is set up. In other words, the
weightings are not fixed, but dynamic, being a combination of
the frequency of the word in the database (hence the random
statistical probability of the term appearing in any given
answer), plus the degree to which the term is associated with
the 'relevant' documents. In other words, a term like 'man'
would tend to have a lower weighting (it is less valuable as an
indexing term because it appears very often), than a word like
'opium', which occurs infrequently. All else being equal, the
higher the frequency, the lower the weight. That is one element.

 The second element in the weighting is the degree of associa
tion to records marked as relevant. In other words, if five
records are marked as 'relevant', and 'opium' only appears in
one of them, but 'man' is in all five, notwithstanding its
common occurrence, 'man' will be given a higher weighting
because of its high association with relevant answers.

 When deciding which document to show to the viewer first, the
weighting of each word is added up, and those with the highest
score are shown first. For instance, supposing one had two docu
ments as follows (where the figures in brackets are hypothetical
weightings):

record A opium (2O) man (40) house (45) = 105

record B opium (20) marriage (1O) man (4O) = 7O

Obviously record A would be shown to the user before record B.
Likewise 'house' would appear before 'man' in a list of terms.
 The addition is only done on index terms in records which
are among the query terms. This is obviously necessary, since
otherwise the records with many index terms would always come
first.

 The algorithm for working all this out, which is done before
each new query is run, is given in MI,pp.159-16O, and is as
follows.

 " Where 't' is the indexing term:

 n = the frequency of term n
 N = the total number of records in the database
 r = the number of records in set R indexed by t

72

 R = the total number of records in the set R

Then the weight for term t is given in the formula:

 (r + 0.5) (N-n -R + r +0.5)
 log ---------------------------
 (R - r +0.5) (n-r + 0.5)

(This is a logarithm to base e). The first match is obeyed, R
and r are zero, and the formula simplifies accordingly. In
presenting terms to the user in the 'terms' command, the value
r/R-n/N is computed for each term, and the terms are arranged in
decreasing order of their value. "

APPENDIX D.
 How to make sequential searches outside a database.
 There are two major programs for sequential searching outside
the database. These are called RETX and KEYX and are described
in detail in MM, pp.114ff. Here we will just give a few examples
of how you might use RETX (sequential retrieval).

 You start by going into MUSCAT and the first part of the
query is set up by typing:

RETX datafile to answer exp

where 'datafile' is a file of built records, and any records
that match the query will be in the file called 'answer'. 'Exp'
is short for expression, and the computer then moves to the next
line and waits for some instructions after the expression.

 You first ask the computer to search by typing 'find', then
you define the field or fields in which it should look, and then
specify the string of letters to be found.

 In a simple case you might be looking through a list of
photograph descriptions to find all those containing the word
'hat'.

 You would type:

retx data to answer exp
find *u s eq 'hat' !

meaning "find the field *u string equals 'hat'" . The
exclamation mark, !, tells the computer that the search
expression is ended. It will then say how many records have been

73

found matching this query. These answers are contained in the
file 'answer'. To read them, you have to type:

print answer to answer1

Answer1 is a new file, in text form, which can either be printed
out on the screen or on a line printer.

 There are several obvious ways in which you might want to
build up more powerful queries. This can be done by building up
queries of a structured kind, using 'and', 'or' and 'not'. Using
'or', for instance, you might put together a list as follows:

retx data to answer exp
find *s eq 'hat' or eq 'house' or eq 'gun'
!

Any record which had one or more of these words would thus be
saved in 'answer'.

 If you wanted to find a record which had several words
concurrently, you could use the 'and' command, thus:

retx data to answer exp
find *u s eq 'picking' and eq 'millet'
!

You would then only get records which contained both words.

 The expressions can be as long as is needed. You might also
want to search for a combination of information in different
fields. For instance, you might want to find the records of
photographs taken by a particular photographer in a particular
village. This could be done as follows:

retx data to answer exp
(find *kl s eq 'Ungma village') and (find *prod *p s eq
'Hutton')
!

(Note that there is no carriage return after 's eq' above; the
find expression can be of any length, without carriage returns.)
You would thus have all the photographs which mention Ungma
village and the person Hutton.

 To this could be added the third feature, 'not', which is
added in as above, and will mean that you can exclude certain
records, defined by another string.

 Obviously such sequential searching is less easy than

74

searching within a structured database. It may, however, be
useful in the early stages when you are editing and cleaning the
materials before a database has been set up. It only needs
individual files of built records, not a fully constructed
database.

APPENDIX E
A parallel system working in 'q'.
 The CDS 2000 interface allows you to set up a user-friendly
way of undertaking and displaying information retrieval. It
accesses a structured database which can also be accessed using
the 'q' or query system (as described in MM, pp.15Off).

 Thus, for instance, if you wanted to do so, it is possible to
enter the list of all the terms in the index to the whole data
base by going into q from the muscat> prompt:

c-q

If you then type

i followed by a word, you will be taken to the nearest term
to your query in the database.

i sun for instance might print

8: sun

This would first show the frequency of the occurrence of the
word in the whole database (8 times here), then the word. To see
the next word, you would type a carriage return, which might
bring up the following (if repeated a few times):

8: sun
1: sunburn
2: sundai
11: sung

and so on. Note that the words may sometimes look rather odd, as
they have been 'stemmed'. Thus 'sunday' appears as 'sundai'. The
stemming system is explained in appendix G.

To finish looking at such a list, type 'q' for quit. If you want
to move backwards through the index, type 'r'. If you want to
find the records which are indexed by that term, type 'p' for
postings.

75

 If you just type an i, followed by a blank, you start at the
top of the list, with the first index term in the database.
These terms are the ones taken from the short title, or *u
field, and from the *k or keyword field. If you want to find
words in the specialised keyword fields, you can do this by
prefixing the word after 'i' with an appropriate capital letter
or number.

In our system these are:

E= ethnic group or tribe
L= location or place
P= person D= date
M= medium
S= source of material
V= videodisc number

Again if you just type, for instance,

i P= by itself, you will be taken to the list of persons

but if you type, for instance,

i P=Hutton you will be taken to 'Hutton' or the closest match
ing name in a list

In the case of V or videodisc number, you would obviously need
to type a number. For instance you might type:

i V=00014 or i V=50073 or i V=50074-50079

It may be the case that the number you chose is in the middle of
a sequence, in which case you will be taken to the nearest
number that can be found.

With dates, you need to type in an exact date, of the form:

i D=1872 or i D=1872/12 or i D=1872/12/27

Which will take you into the appropriate part of the date term
index.

 A new feature of the 'q' system is that by going into 'q'
and then typing 'info', you will be given details of how big the
database you are in really is, in particular the percentage of
it that is filled. Remember that while a DA database is by
definition full, a DB database needs some spare space and is
likely to start to refuse files at any point between being 85
and 9O per cent full. It will not fall over, but will just
refuse to add the records.

76

APPENDIX F
Muscat on MS-DOS.
Martin Porter

File names in Muscat.
Within Muscat, the following extensions are associated with the
following types of Muscat file:

 type of file extension
 ------------ ---------
 text file TXT
 Muscat sequential file MUS
 DA or DB file DA PAG output
PAG

In a Muscat command, the appropriate extension is added on to a
file name if no extension is supplied by the user. Thus

 build a:r\data to recs with spec.dat

is equivalent to

 build a:r\data.txt to recs.mus with spec.dat

To refer to a file which has no extension, the file name should
simply be terminated with '.', which tells Muscat that the
extension is null. e.g.

 build sample. to recs.

This builds from the file 'sample', with no extension, to the
file 'recs', again with no extension.

 The Muscat system is resident in a single directory, which we
will denote by M. The name for M may be chosen by the installer,
but by default it will be C:\muscat. Any files in this directory
may be referred to in a Muscat command by putting '$' at the
front of the name. Thus

 $macros\el\build.txt

refers to the file el\build within directory M (by default, the
file C:\muscat\macros\el\build.txt). This will not generally be

77

of interest to the user, except to note that $work gives the
name of a directory which can be used for scratch files. By
convention:

 $work\fa, $work\fb ... are scratch text files
 $work\fr, $work\fs ... are scratch Muscat files.

Muscat DA and DB files have a default block size of 2048 bytes.

Command set u.
On entry to Muscat, a command set with set letter 'u' is set up.
'u-help' gives a list of the commands available:

u-select application/a/r
 - selects the given Muscat application (e.g. 'u-select el')
u-dump from/a/r
 - does an indented-style print of the 'from' file on screen
u-sort from/a/r,to/k/a/r,opt
 - sorts 'from' to 'to' using 'opt' as the 'with' file. 'to2'
etc
 are set up as temporary files
u-merge from/a/r,from2/a/r,to/k/a/r,opt
 - similarly, does a merge of 'from' and 'from2' to 'to'

The important one is 'u-select'. This is followed by an applica
tion name which selects a given Muscat application. If the
application name is 'el', Muscatel is selected. The same effect
can be achieved by entering Muscat with the command

 muscat sys el

Muscat applications are organised so that they can be called up
in this way. To create your own application called S, create a
directory S in the muscat directory M\macros, and put your
macros (with extension TXT) into S. Then put a macro file
INIT.TXT into S. This will be obeyed when 'u-select S' is typed,
and should be designed to set up an appropriate set letter for
the rest of the command set, and possibly select a format. e.g.

 ||
 alias c $macros\S\
 format $formats\S

Equally 'muscat sys S' causes this file to be read as an INIT
file.

(Here '||' is treated as a comment when the file is read as an
INIT file, and as insertion brackets surrounding a null command

78

syntax when read as a macro. See below.) You do not have to use
this convention, but it provides an easy way of setting up and
distributing new applications.

Muscat comments in commands.
It is stated in 1.12.4 of the Muscat Manual that comments begin
with the character '\' in the command language as well as else
where. In MS-DOS this proves to be unsatisfactory, since '\' is
a significant component in file names. In the Muscat command
language therefore (BUT ONLY IN THE COMMAND LANGUAGE) '|'
replaces '\' as the comment character. e.g.

 | Now retrieve recs with *on-fields
 retx \dir1\in to \dir1\out | here stream follows
 goto *on \ search for *on-field
 !

This is the only incompatibility between the Muscat Manual and
the MS-DOS implementation.

Calling Muscat.
The MS-DOS command to invoke Muscat has the form

 muscat [[sys] S][init F][from F][log F][dir M][workspace N]

in other words, 'muscat' may be followed on the same line by a
list of zero or more keyword-argument pairs, the keywords being
'sys', 'init' etc, and the arguments being single words, repre
sented here by S, F, M and N. Here are some examples:

 muscat sys library
 muscat init \d\init from \d\prog1 muscat
workspace 3000

S stands for a Muscat application (see 3), F for file names (see
1), M for the directory containing the whole Muscat system (see
1), and N for a number.

The FROM keyword specifies the source file of the Muscat
commands to be obeyed. If omitted, Muscat commands are read from
the terminal. The INIT keyword specifies a file of commands
which will be obeyed before execution of the main command file
given by the FROM keyword.

The SYS keyword is like INIT, but this time the source file of
commands is taken to be macros\S\init.txt. Note that 'SYS' may

79

be omitted, so that

 muscat el

is equivalent to:

 muscat sys el

The LOG keyword specifies the file to which the Muscat log
output is to be sent. If LOG is omitted, output is directed to
the terminal. In the case of the log file, Muscat does not
attempt to add on the extension TXT to the supplied file name.

 The DIR keyword identifies the directory M. By default M is
C:\muscat.

The WORKSPACE (or WS) keyword specifies the amount of RAM, in
words (one word = 4 bytes), which is made available to Muscat.
By default five eighths of the largest contiguous free area of
RAM is used.

Command MSDOS.
The Muscat MSDOS command causes the text following the word
MSDOS to be obeyed as an MS-DOS command, e.g.

 Muscat> msdos xcopy c:main\s a: /p/e/s

Breaking.
To cause an attention in Muscat press CTRL-BREAK (i.e. hold down
the CTRL key and press the key marked BREAK). Occasionally it
may be necessary to follow this with the RETURN key. The
response from Muscat will be:

 quit, halt or ignore? (Answer Q, H or I)

Response I then continues the interrupted process. Response H
halts the current command, and the user sees the 'Muscat>'
prompt. Response Q quits Muscat.

 TIME command.
A TIME command is supplied, but it prints out the time of day
rather than the CPU usage. Even so, it can be used for its pri
mary purpose, namely to get time estimates of Muscat operations.

80

Muscat extensions (to the Manual 3rd edition).
(i) The b-option in build can now have as a non-group code as
the
code for analysis. Thus:

 b *X{0} C *X{1} *X{2} ...

where C is a character and the *X{i} are non-group codes,
enables

 *X{0} D{0} C D{1} C ...

where the D{i} are text sequences, to be used as an abbreviation
for

 *X{0} D{0} *X{1} D{1} ...

(ii) DB files can now operate with k1n and k2n identity profiles
(see section 5.2 of the manual).

(iii) The command REENTER causes Muscat to be re-entered with a
new command level. A subsequent STOP returns the user to the
earlier level of Muscat, with the aliases and format at that
level restored. REENTER may be followed by a string which sup
plies the prompt, e.g.

 Muscat> reenter p>
 p> ...
 p> stop
 Muscat> ...

REENTER may be usefully called from a macro command, or with
'muscat reenter' from the Q command (see (iv)).

(iv) 'Muscat' command in Q. In the command Q, a command of the
form 'muscat C' causes the Muscat command C to be obeyed. On
completion return is made to Q, with the environment of Q undis
turbed. e.g.

 Q> rto recs.out
 Q> Muscat c-list recs.out to recs.printed
 Q> ...

(v) Muscat now provides store files. These are files which sit
in the Muscat freespace, and vanish on exit from Muscat. Any
file name beginning '!' is treated as a store file. e.g.

 Muscat> copy to !spec from

81

 !
 Muscat> print recs to !out with !spec
 The command DELSF (with up to 11 arguments) can be used to
delete one or more store files, e.g.

 delsf !a !out-rec !temporaryfile

The command EXSF examines the currently existing store files,
reporting names, types and sizes (if above 1K). (vi) The
program NUMBER substitutes numbers for 'macros' in a text. It is
particularly useful for numbering records of BUILD input. There
are 26 variables a to z. A variable may be set by

 #(X=expression)

and substitutions made by including 'macros'

 #(expression).

Here X is a letter, and an expression is a list of letters and
numbers separated by + or - signs. e.g.

 #(x=x+1) #(y=y-1+x) #(x) #(0-y)

A macro #(X') will be interpreted as #(X)#(X=X+1).

A typical call is:

 number in.file to out.file

The final value of any used variable is reported on completion
of the command.

Transporting Muscat applications.
A Muscat application (e.g. Muscatel) is normally implemented as
a set of macro commands residing in a single directory. It is
handy to be able to pack the macros into a single file, either
for editing purposes, or when one wants to implement the
application on a version of Muscat running on a different kind
of computer. As an aid to doing this, two Muscat commands,
called PACK and UNPACK have been provided for transferring a
group of files into and out of IEBUPDTE format (a format which
we will explain below, but which will be familiar to users of
IBM mainframe systems).

PACK has the command syntax filespec/a,to/k

The 'filespec' argument is an MSDOS 'ambiguous' file spec, e.g.

82

'C:\musc\macros\lib1*.txt' or 'mac\list?.txt',but the extension
part must be specified explicitly without wildcard characters.
The 'to' argument is an output text file which will contain all
the files corresponding to the file spec, each file prefixed by
a line of the form:

 ./ ADD NAME=x

where x is the name of the file (not including the extension).
The 'to' file ends with the line:
 ./ ENDUP

The subfiles in the 'to' file are sorted into name order.

PACK leaves a sorted list of file names in the store file !
file_list. If 'to' is omitted, this is the only action of PACK,
which is then like a variant of the MS-DOS DIR command.

UNPACK has the command syntax from/a/h,to/k/a,suffix/k

UNPACK is the converse of PACK. 'from' gives the file in
IEBUPDTE format, 'to' and 'suffix' supply two strings, which,
when placed before and after each member name x, define the
destination file for that particular member. Thus the following
commands are converses:

 pack C:\musc\macros\lib1*.txt to flat1
 unpack flat1 to C:\musc\macros\lib1\ suffix .txt

Note the character '\' at the end of the argument for 'to' in
the unpack command.

APPENDIX G
Some features of the indexing system.
Suffix stripping, or stemming.
 Reference has been made several times to 'suffix stripping'.
This should be explained a little more. One general problem
facing free text searches is that of different word endings.
You may want all photographs and records referring to
'marriage', but if the query merely looks for the full string
"marriage", it is likely that you would miss a great deal of
valuable material where the word used is closely related, but
not identical, for instance "marriages", "married",
"marriageable", "marrying", "marry" and so on.

83

 In order to overcome this problem, the Naga system uses a
'suffix-stripping' or 'stemming' algorithm, which is optional.
This strips words down to their roots, in this case 'marri'.
Since the letters 'i' and 'y' are interchangeable in this algo
rithm, this would find all the above variants of marriage,
whether you typed in 'marry' , 'marriage' or any other variant
in the query. (The full details of the algorithm which does this
are explained in The paper by M.Porter, 'An algorithm for suffix
stripping', Program, vol.14, no.3, pp.130-137, July 1980).
 Although these can all be varied in the indexing specifica
tion, in the present implementation we have made certain choices
as follows.

 The program for suffix stripping and presenting words cur
rently does the following.
 'Free text' only fields:

 Surrounding single quote marks are taken off: thus one can
put foreign words such as 'arbre' or 'maison' in such quote
marks in the text, but later find them by searching for arbre
or maison.

 The same is the case with brackets: thus one can put in
(house) and later search for house.

 The same is true of commas, full-stops etc. Thus if one types
in a sentence of the form "daughter, father, and all the
family." one can then search for daughter or father or family.

 The same is true of hyphens; the hyphens are ignored and the
two parts are each treated as a separate word. Thus for instance
"double-banked" could be found as double or banked.

 All words are 'suffix-stripped'. If you would like to see how
a word appears when it has been suffix stripped, you can search
for the word in the 'free text search' mode and then print out
the 'terms' by which the record you have found is indexed. This
gives the suffix-stripped version within single inverted commas.

Fields which have been indexed for both free text and structured
queries.

 The material is indexed in the same way for the "free text"
mode. Thus, when you search in the "free text" mode, names,
places etc. will be suffix-stripped and all surrounding
materials ignored as described above.

 These fields are also indexed for structured searching and

84

will appear in the structured query lists. In this form, there
is no suffix stripping and all the surrounding characters are
included.

 Thus in the 'Structured' mode, (Harding) will be left as
(Harding); likewise, punctuation marks attached to the words
will be left there. Thus "Mary," will appear in the structured
query as "Mary,". It is important to remember this in relation
to persons, places, etc. In other words, in the structured form
the whole string of characters, including spaces, is treated as
one word. Thus if one put in 'Harding's wife', it would appear
in the structured form as exactly that, 'Harding's wife'.

The effects and limitations on forcing upper and lower case.

 One commonly puts in text in a mixture of upper and lower
case, that is capital letters and ordinary letters (for
instance, a name as Harding). In order to increase efficiency in
searching, it is assumed that all text put in for free text
searching will be 'forced' into lower case. This means that you
can type in Harding, HARDING, harding or any combination of
upper and lower case letters, and you will find every occurrence
of Harding.

 If you are indexing a field only for free text searching, it
is therefore impossible to 'force' upper case, since it goes
against the approach outlined in the previous paragraph.
 On the other hand, it may be the case that for the struc
tured mode, when lists of terms are presented to the user, such
a strategy is not satisfactory. Firstly, it would be necessary
to look for every separate type of string - hence one would have
to look for Harding, HARDING, harding etc. on the list.
Secondly, such a list would be unnecessarily long and untidy.

 If you are only indexing a field for structured searching,
it will be forced into upper case. This does not change the
actual data when you finally see the record on the screen. It
does mean that you will find records better, and have a more
comfortable screen to look through.

The treatment of numbers or digits

 In the free text mode, these are ignored entirely. Thus, for
instance, if you type in 1990 it would not be indexed; 12house
would be indexed as house; household12 would be indexed as
household; house12hold would be indexed as two separate words,
house and hold, the numbers being treated as a space.

 In the structured mode, numbers are treated as a string of
characters and can be searched for in the normal way: for in

85

stance, if you type in 1990, you can search for 1990.

Words that are never indexed; the 'stop list'

 A 'stop list' of words that are never indexed is included in
one of the indexing specifications. This includes all one letter
words, and the following other words:

 'about' 'after' 'again' 'against' 'all' 'an' 'and' 'ani' 'down'
'dur' 'each' 'except' 'few' 'first' 'for' 'from' 'into ''is'
'it' 'more' 'most' 'out' 'over' 'own' 'per' 'same' 'so' 'some'
'to' 'togeth' 'too' 'under' 'until' 'up' 'us' 'veri' 'was' 'ar'
'as' 'at' 'be' 'been' 'befor' 'below' 'between' 'both' 'but'
'by' 'can' 'further' 'had' 'ha' 'have' 'how' 'if' 'in' 'no'
'nor' 'not' 'of' 'off' 'on' 'onc' 'onli' 'onto' 'or' 'other'
'such' 'than' 'that' 'the' 'their' 'then' 'there' 'through'
'which'
'while' 'why' 'will' 'with'.

They are in single inverted commas to indicate that they are the
'suffix stripped versions; for instance, 'dur' is 'during', 'ha'
is 'has' and in several cases the final 'y' has been changed to
an i ('onli' is 'only' for instance).

APPENDIX H
THE MUSQUITO TEXT PROCESSING UTILITY By Michael Bryant
MUSQUITO is a utility for processing text files intended for
CDSi input. Its purpose is to allow the identification of items
to be coded separately within a body of coherent text, and
their automatic extraction.

The program works through a file looking for angle-bracket
delimiters (< >). Any text within angle bracket pairs is copied
and appended to the end of the current record (identified by the
end of record mark - #).

To allow the automatic allocation of codes to the extracted text
there are two important processing conventions:-

1. If the first character after an opening angle bracket is
an asterisk then this is treated as the start of a field code.
All following characters up to the next space are interpreted as
the code and are removed from the source text.

2. If the first character after an opening angle bracket is
another opening angle bracket then it is assumed that the
following text, up to the first closing angle bracket, is to be
removed from the source text. This can be used for the automatic

86

coding of group codes, or the "on line" creation of extra
material.

To allow a comfortable text entry style spaces on either side of
the main angle brackets are reduced to one in reconstituting the
basic text, and a trailing space after a muscat code or enclosed
angle brackets is removed. See the conversion example below.

Using MUSQUITO
Load the program MUSQUITO.EXE into the directory which will
contain the files to be processed, or locate it in the DOS
search path.

The program can be used with command-line parameters or interac
tively. With command-line parameters the program processes the
given file, then finishes. When used interactively you are asked
whether you wish to process further files as each one finishes.

To run from the command line, log on to the directory containing
the source file and type:-

MUSQUITO FILENAME_1 [FILENAME_2]

FILENAME_1 is the name of the source file for processing. It can
have the following forms:-

NAME the program assumes the file has the default extension .MTO
(file = NAME.MTO).

NAME. the file has no extension (file = NAME).

NAME.EXT the file is exactly as given (file = NAME.EXT).

FILENAME_2 is the (optional) name of the destination file. If
there is no FILENAME_2 then the destination filename is set to
the name of the source file with the extension .TXT (file =
NAME.TXT), otherwise the rules for FILENAME_1 are followed with
.TXT as the default extension.

Examples
MUSQUITO GURUNG
 processes GURUNG.MTO to GURUNG.TXT

MUSQUITO GURUNG.

 processes GURUNG to GURUNG.TXT

MUSQUITO GURUNG.ABC GU5

87

 processes GURUNG.ABC to GU5.TXT

MUSQUITO GURUNG.TXT GU5.ZZZ

 processes GURUNG.TXT to GU5.ZZZ

If source and destination filenames end up the same then a warn
ing is given and the destination filename is changed by
appending (or altering the last character to) a dollar sign.

MUSQUITO GURUNG. GURUNG.

 processes GURUNG TO GURUNG$

MUSQUITO GURUNG.TXT

 processes GURUNG.TXT to GURUNG.TX$

To run interactively, simply type MUSQUITO and the program will
start, prompting you for filenames as required. The same assump
tions apply as with command-line parameters.

Limitations
MUSQUITO works with files in the currently logged directory. You
cannot give directory paths as filename parameters.

Any size of file can be processed as long as there is room for
the destination file on the disk you are using, and there is
enough memory available to hold the copied material from any one
record.

Most error conditions generate messages and close the program in
an elegant fashion.

Example Conversion
Source File = EXAMPLE.MTO:-

*rec This is an example of the use of angle brackets as delimit
ers for MUSQUITO. <*name MUSQUITO> is a utility for processing
files intended for <*prog Muscat> input. Its function is to
allow the <*action marking up> of Muscat fields within other
fields, especially long texts.
#
*rec A feature is the use of angle brackets within angle brack
ets. The purpose here is to allow <<*prog *specific> group code>
specifications.
#

88

Destination File = EXAMPLE.TXT

*rec This is an example of the use of angle brackets as delimit
ers for MUSQUITO. MUSQUITO is a utility for processing files
intended for Muscat input. Its function is to allow the marking
up of Muscat fields within other fields, especially long texts.

*name MUSQUITO
*prog Muscat
*action marking up
#

*rec A feature is the use of angle brackets within angle brack
ets. The purpose here is to allow group code specifications.

*prog *specific group code
#

APPENDIX I
FILES AND MACROS
Introduction
 The system is contained in a set of programs and macros,
some of which can be changed, some not. There are four 'executa
ble' files. Three of these are kept either in your route or in a
directory (e.g. dos) on your normal path so that they can be
accessed from anywhere. These are:

muscat.exe - the main program which is invoked when 'muscat'
is called
cdsi.exe - the program to run the Cambridge Database System
Interactive
musquito.exe - the program to run a text-editing utility

There is another executable file:

discat.exe - the program to run discat (disc cataloguing sys
tem)

This is kept in the sub-directory \muscat\discat, along with
'overlay', which are self-contained programs forming a 'runner'
which makes it possible to use a DA database without other soft
ware.

 The 'macros' or small programs turn the general

89

system 'Muscat' into a particular application useful for
specific purposes. By modifying these macros it is possible to
develop and change the system and application. Since the macros
are held as text files in various directories, it is not too
difficult to alter them using a word processor. When they are
altered, the next time that macro is used, the new
version will be implemented. (A way of automatically
re-writing some of the simpler macros is provided in CDS
Interactive, as explained in the separate manual).

 In order to alter and modify the macros, it is necessary
to understand how they work in general, and what each one looks
like in particular. This appendix sets out to explain how this
is done and gives the function of each of the specialised
macros. The full text of the macros can be seen by printing them
out as needed.

 A general description of macro commands is given in the
Muscat Manual, 3rd edn., pp.21-2. It is explained that the
name of a macro command must always begin with a letter and
hyphen. Thus, in our case, the major macros start c- , for
instance c-build. This tells the computer to use the macro
called 'build' which has been set up using an 'alias' c. All the
'macros' in the directory \muscat\macros\cds will thus be
invoked using c-.

File names.
 Within Muscat, the following extensions are associated
with the following types of Muscat file:

 type of file extension

 text file txt
 muscat sequential file mus
 database file (DB or DA) da
 pag output pag

In a muscat command, the appropriate extension is added on to
a file name if no extension is supplied by the user. Thus

 c-build mills to mills

is equivalent to

 c-build mills.txt to mills.mus

To refer to a file which has no extension, the file name
should be terminated with '.', which tells Muscat that the

90

extension is null, for example

 c-build mills. to recs.

This builds from the file 'mills' to the file 'recs' with
no extension.

The over-all structure of the files and macros.
 The general structure of the files in CDS may be
represented best in a hierarchical way as follows:

 C: (the root directory)

MUSCAT - FORMATS - WORK
 - MODS
 - DELBASE
 - CDS
 - DISCAT
 - CDSI
 - MACROS - UT
 - EL
 - DISCATEL
 - CDS
 - CDSI

THE MUSCAT DIRECTORY
 This contains the whole system, apart from the executable
files. There are two small directories, with very little in
them.

Formats: this has two empty directories and formats for 'el'
(i.e. muscatel) and for 'cds' (i.e Cambridge Database System)
and discatel (elementary discat system).

Work: just has two empty directories. Into this will go
temporary work files while the system is in use. It needs to be
cleaned out periodically by deleting all the files in it.
MUSCAT\MODS
 The main set of programs is held in the sub-directory
'Mods'. This holds all the major Muscat commands, such as
'build', 'checkid', 'dbcreate', 'number' etc. There are 103
files in all, which may be seen by examining the 'Mods'
directory. They cannot be altered as they all have the

91

extension .cin.

MUSCAT\DELBASE
 This directory, which can be moved from within the 'Muscat'
directory to a higher level (as a sub-directory of the root
directory), contains an example of the 'Discatel' (or elementary
discat) system. This allows you to set up your own database with
its own format, record structure, indexing requirements and
print specification. It contains the following macros and data.

sample.txt - a small sample of records to try out the system
pspec.txt - a specification of how the material is printed
pspec1.txt - an alternative specification for printing
pspec2.txt - an alternative specification for printing
intro.txt - the introductory screen pages for a database
db.da - the current database, if there is one
dspec.txt - the screen specification
ispec.txt - how a document is to be indexed
iexp.txt - how a document is to be indexed
introduc.txt - a longer version of the introductory screen pages

A fuller description of these, with a full print-out, is con
tained in Appendix O.
 MUSCAT\CDS
 It is in this directory in which any files which are to be
used in he system (for instance text files which are to be
built and put into a database) should be kept. The different
extensions (as explained at the start of this appendix) will
show what kind of file or macro is being referred to.

 This directory will contain any database files. An
updatable database (DB) will be called db.da, a direct access
database (DA) will be held in two files called darec.da and
daterm.da.

 The directory contains some temporary work files, called
s.mus, r.mus, w1.mus and w2.mus. If these become too large, they
can be deleted.

 It may also have a format.mus file, to help define a format
for the data, which should not be deleted.

 It also contains specifications of what the data should
look like when printed out on the screen using the full system,
with the numbers of records on (pspec.txt), with the numbers of
the records off (off.txt), and in 'q' and 'print'.

92

 It contains an initialisation sequence, a way of going into
the database called init.txt.

 The other major file is called intro.txt. This contains
all the special introductory materials, for instance the help
pages, the pages of choices etc. It can be modified to suit your
needs, being a text file, and then re-loaded, as explained in
Appendix K. It is automatically loaded in each time a new
database is set up, because the macro for setting up a
database, c-create, includes a command asking for intro.txt
to be added into the database.

MUSCAT\DISCAT
 This directory contains a completely self-contained system,
which allows you to run a Database (DA) without any of the other
software, as described in the 'readme' in that directory. The
files are as follows:

overlay - a program to run the system
create.bat - used in running the system
readme - how to enter the system
format.mus - the format for the system
daterm.da - a small trial database
darec.da - as above, the complementary records
pspec.txt - the print specification
start.txt - to start the system with a mono screen
start2.txt - as above, with a videodisc
start3.txt - to start the system with a colour screen
start4.txt - as above with a videodisc
discat.exe - a program to run the system

MUSCAT\CDSI
 These are the macros which are used by the CDS Interactive
software to set up particular applications, as explained in
Appendix V.

MUSCAT\MACROS
 This sub-directory has four sub-directories within it.

THE UT MACROS
One is called ut, short for utilities. This has a number of
files or macros which can be edited since they are text files
(with the extension .txt). The macros in this are as follows:
dump, help, init, merge, select, sort, paj. They can be invoked
by using a command starting with the prefix u-, for instance
u-select. The purpose of these various utilities is explained

93

in appendix F, under 'Command set u'.

THE EL MACROS
 This is the 'Muscatel', or elementary Muscat system,
as described more fully in Appendix A of the Muscat Manual,
where the full text of each macro is printed. It contains the
following macros (all of which can be modified to suit your
needs): build, codemap, combine, cycle, init, kill, list0,
list1, makef, merge, mult0, mult1, number, print, reduce, ret,
scramble, sort, unlev, update, all, asort, help, j1, print2,
sort2, oldform.

 This set of macros can be accessed in two ways. You can
either go into it by entering Muscat with the command 'muscat
sys el', or by going 'u-select el'. It is much easier to adapt
and use than the full Muscat system, and is particularly
useful for numbering, sorting and printing documents. The
full text of these macros is printed on pp.167-171 of the
Muscat Manual (3rd edn.).

 Once inside the muscatel system, the commands are
preceded with the prefix g-, thus g-build, or g-number.

 The default muscatel system is designed around 26
string fields called *a, *b...Sometimes users need more than 26
fields, or need fields with more suggestive names. To achieve
this, you can define your own format and use it to override
the Muscatel format. How to do this is explained in the Muscat
Manual, p.189.

THE DISCATEL MACROS
 This contains a special set of macros which work with the
'Discatel' system. A number of these overlap with those in the
El (Muscatel) system. Those which vary from Muscatel, are
printed in Appendix S.

THE CDS MACROS
 This sub-directory contains the main set of macros which,
when used with the prefix c-, allow you to set up a database
system and interrogate it. A functional listing of these may
be given as follows:

Setting up a format for the data.
makef - provides a format or template for the records.

94

Helping to organise and clean the data.
dateind - to sort a batch of records by the *prod *d field

klind - for linking maps with synonyms (see klspec for
a
description of this)

kdind - to sort a batch of records by *kd field

sort - to sort a large file (equivalent to u-sort)

voc0 - to produce a diagnostic output of everything except the
*t
and *ns fields

ied1 - for moving data from a group field (*g) to an identity
field (*i)

bk1 - creates a raw contents list for a book

kill - kills (suppresses) a field or fields out of a record

acqr - sorts by the reference (*r) in acquisition field

lbrief - to print out only the short caption (*u) and identity
(*i) fields

Creating appropriate text records and formats
bksplit - splits books/manuscripts into a text and record part

liste1 - creates appropriate bracketing for references

locmap - creates variants and standards names in location
records

Checking the records and numbering them.
checkid - checks the identities of the records

check0 - checks that certain main fields (*c *t *i) are in a
record

number - automatically numbers the records

termsof - if a single record, prints out all the terms of a
built record as it would be indexed in the database

95

Building the records and unbuilding them (printing).
build - to build into 'muscat' records for entry to database

list - to list out the built records from muscat files

print - to print out the built records

dump - version of print which shows the hierarchical structure
of the fields

listm - lists out (prints) all 'marked' files (suitable for
editing)

Setting up the database
create - sets up a DB database (prompting for size), called
db.da

setupir - sets up a DA database (from a built file)

Indexing records and adding them to the database.
index - specifies which fields to index and words to leave out

add - adding records to a database

del - deleting a single record from the database

update - adding records to a database which have already
been added in before and only slightly changed

batchadd - to batch add a file, running build/liste1/number/add

Going into the database.
dbsys - going into the DB database system

disc - going into the DA database system

q - going into the 'q' or query database system

Printing the results.

96

pspec - the print specification for the screen version of cds

dspec - the print specification for 'q' and 'print'

Saving and printing files of marked records.
getmrecs - to turn a marked file into a muscat file in a DB
system

getdiscm - to turn a marked file into a muscat file in a DA
system

getrecs - searching for a set of records outside a database
system

Setting up the function keys.
The function keys can be set up to run macros. When in CDS
2000,
it is possible to do various things by pressing the function
keys
in combination with control, as follows:

f1 - saving a record to a temporary file within the Database

f7 - printing out a hard copy of the current record

f8 - going out of the database temporarily into Muscat, or
ending an edit entered through f1 above

THE CDSI MACROS
 This sub-directory contains specific macros used in the CDS
Interactive system (as described in Appendix V).

A note about macros; and how to stop captions being truncated.
 Macros specify various parameters. Some of these are
machine dependent, and come after the word 'with'. Hence, 'with
v' is a machine-dependent command to link the machine to a
videodisc.

 Other controls are machine-independent, and are prefixed by
the word 'opts'. Thus one can specify the number of records to
be seen by typing 'opts z2000'.

97

 It is thus important when changing a macro, to put the change
in the right place. An illustration will also allow you to make
a change. In the macro called dbsys.txt, which takes you into
the database, there are a series of options defined after
<opts>. Just before this, you will see the line with just 'm69'
on it. This has the effect of setting the margin for caption
lists to 69 characters. We have found this useful, since the
purpose of these caption lists is to be able to look very
quickly through a large number of records, and usually a line is
enough to give one the idea of whether you want to see the full
record. It does the same with the 'marked' files.

 If, however, your captions were pretty short in any case,
seldom exceeding, say, two lines, and you wanted to see the
whole of them, then this instruction could be deleted. Then the
whole of the caption would appear. Since our captions were often
several lines long, we found a number of difficulties in
printing on the screen without this truncation. So you should be
wary if you decide to remove 'm69'.

 APPENDIX J
SOME EXAMPLES OF EDITED RECORDS WITH THEIR CODES
Record indexing a sequence of moving film
*c 16mm colour film taken by Ursula Graham
Bower between 1940 and 1944
*m films
*u fish poisoning expedition at river near Hangrum
*m films *ke Zemi *prod *p Graham Bower /Ursula
*d 11.1940 *acq *p Pitt Rivers Museum Archive, Oxford
*g *i B.11832=11834 *u long shots of procession
walking to river
*g *i B.11835=11838 *u close-up of people carrying
vegetation
*g *i F.11839=12039 *u beating poison into river
*g *i F.12042=12219 *u man beating fibre
*g *i F.12220=12467 *u little boys searching for fish
*g *i F.12470=12628 *u little boy searching for fish
*g *i F.12631=12700 *u little boys searching for fish
*g *i F.12701=12899 *u men beating fibre on rocks
*g *i F.12900=13135 *u men scrambling up river looking
for fish
*g *i F.13138=13302 *u crowd of men swimming down
river looking for fish
*qv black and white photographs taken by Ursula
Graham Bower {\B.52911\} {\B.52912=52915\}

98

#

Record describing a museum artefact
*c colour photographs of Naga artefacts from
various sources
*m artefact
*i B.642 *u Hat of cane-work with two [missing]
black feathers and a large boar's tusk. A
chaplet of long pig's bristles encircles the hat
interspersed with sharp bristles dyed red. An ornament of
plaited yellow cane or orchid-stem is in front attached
round the 'chaplet' cane foundation. Phom.
*m artefacts *ke Phom *z 12cm (height of cap)
*prod *e Phom *prod *r 4:218 *coll *p Hutton /J.H.
*acq gift *p Pitt Rivers Museum, Oxford
*d 1919 *r Hutton I.183
*ns descriptions derived from original source material
unless in square brackets or otherwise stated
#

Record describing a photograph
*c black and white photographs taken by C.R.Stonor,1946-1948
*i B.51668
*u gate at Chepoketami village
*m photographs
*kl Chepoketami
*prod *f celluloid negative *prod *p Stonor/ C.R.
*prod *d 5.1946
*acq *p Pitt Rivers Museum Archive, Oxford
*acq *r 526
*acq *n documentation based on index in Pitt Rivers Museum
Archive
*ns text in square brackets, if any, is taken from illustrations
in Stonor's article, 'Feasts of Merit among the Northern
Sangtam' #

Record describing a sound recording
*c wax recording, originally on wax cylinders
*m sound
*i V.46050=49750 *u "Lipeli", a kind of song sung
by Semas when working in the fields *m sound *t ["Lipeli"
or "Lephile", sung when reaping.] *ke Sema
*prod *p Hutton /J.H. *n information derived from source
unless otherwise indicated
*prod *d 1919

99

*acq *p Pitt Rivers Museum Archive, Oxford *r cylinder
no.9 *qv J.H.Hutton, Sema Nagas, 1921, 115-6
*ns sound recording made by anthropologist #

Record describing a location and map
*u Place name: Wangla *t map: {\C.47160\} map record: {R.64160\]
*ke Konyak *kl Yangla = Wangla *kl Lakma = Wangla
*ns a location and map record #

Record describing an extract from a diary
*c Christoph von Furer-Haimendorf,
Naga diary 5, translated by Dr Ruth Barnes
*m diary
*u physical anthropology, colour of hair *kp Ngapnun
*ke Konyak *kl Longkhai *kd 11.4.1937
*prod *p Furer-Haimendorf *d 1.4.1937-26.6.1937
*t In the meantime it also was surprisingly easy to find
people for Kauffmann to measure {\B.51109\}. The Ang started
it off. Others followed and finally we could even persuade
some of the women to allow themselves to be measured.
Remarkable for many is the light and plain hair which has
almost blond strands and is not tight. The mongoloid fold
is especially developed among some, for example Ngapnun.
Unusual is also the slender and graceful build which is
expressed in hands and feet as well.
*ns anthropologist's fieldwork diary #

Record describing an entry from a fieldwork notebook
*c Christoph von Furer-Haimendorf notebook 3
*m notebook
*u were-tigers of Kongan and his powers; shamans *ke Konyak *kl
Kongan *kd 26.8.1936
*prod *p Furer-Haimendorf *d 8.1936-6.1937
*t In Kongan is a real thibu who is also a were-tiger,
Lem-ang, who is also gaonbura. A time ago the
Mohore of Merankong (an Ao) slept at night in the jungle
between Tamlu and Namsang. Suddenly they saw a tiger and
fired at him without hitting him. The tiger (172) ran
away. When they came to Borjan they met Lem-ang and the
first thing he said: "Why did you try to shoot me, I
hardly could escape?" Lemang always knows in what village
and what house illness is and if it is a man or a woman.
He goes f.i. as tiger to Tamlu. When he is called to a
sick man first his spirit goes to the man and feels on his

100

chest and body where the illness is.
*ns anthropologist's field notebook
#

Two records from a book
*c Pride and Prejudice
*m book
*prod *d 1798
*kp Bennet/ Mrs
*prod *p Austen/ Jane
*u marriage and fortune
*t It is a truth universally acknowledged, that a single man
in
possession of a good fortune must be in want of a wife. #

*c Pride and Prejudice
*m book
*prod *d 1798
*kp Bennet/ Mrs
*prod *p Austen/ Jane
*u marriage strategies of neighbours
*t However little known the feelings or views of such a man
may be on his first entering a neighbourhood, this truth is so
well fixed in the minds of the surrounding families, that
he is considered as the rightful property of some one or other
of their daughters."
#

Record describing an ecclesiastical court case
*c Archdeacon of Colchester's Court
*prod *d 17.1.1581
*kp Green/ Mary
*kl Earls Colne * Coggeshall
*acq *r Essex Record Office, D/ACA/8 fol.238v
*u Office of the Judge against Mary Green of Earls Colne: she
appeared personally and it was objected against her by the
churchwardens of Colne that she is vehemently suspected of sor
cery and witchcraft etc. Therefore the judge ordered her to
purge herself under the hands of four of her neighbours, of
three were of Coggeshall and one of Colne aforesaid, at the
next court.
*ns Ecclesiastical court record #

Records describing some parish register entries
*c Parish Registers, Burials #m a
*acq *r Essex Record Office, D/P209/1/1 #m b

101

*kl Earls Colne #m c
*k burial #m d
#l a b c d
*kd 5.7.1567
*kp Allen/ Thomas * Allen/William <father
*k son #
*kp Abbott/ Joan * Abbott/ Henr <father
*k daughter #

*kd 13.11.1567
*kp Ells/ Rose * Ells Jeffrey <father
*k daughter #
*kd 4.2.1568
*kp Read/ Margery * Read/ Robert <father
*k daughter #

Some records of book titles
*kp Ahern/ Emily Martin
*kd 1972
*kl Cambridge University Press * Cambridge
*z ix, 144 pages
*m book
*acq *r 495.200
*u Chinese Ritual and Politics #

*kp Burling/ Robbins
*kd 1968
*kl Pennsylvania University Press
*z 377 pages
*m book
*acq *r 368.02
*u Rengsanggri ; family and kinship in a Garo village #
*kp Smout/ T.C
*kd 1973
*kl William Collins * London
*z 540 pages
*m book
*acq *r 543.27
*u A History of the Scottish People 1560-1830 #

Two archaeological records
*c Late Pleistocene Fauna
*kl Inamgaon * Maharastra
*kd 1968-1983
*prod *p Dhavalikar/ M.K. * Sankalia/ H.D. * Ansari/ Z.D.
*acq *r INM/134/DC

102

*qv Fig. 5.32.2
*k Femur * proximal right
*u The specimen is a proximal end of femur preserved with head,
fovea capitis, trochanter major, trochanter minor and fossa
capitis. The specimen is mildly rolled and has, therefore,
obliterated edges.
*ns archaeological record #

*c Late Pleistocene Fauna
*kl Inamgaon * Maharastra
*kd 1968-1983
*prod *p Dhavalikar/ M.K. * Sankalia/ H.D. * Ansari/ Z.D.
*acq *r INM/63/DC
*k Tibia * condyler epiphysis * right
*u The specimen is represented by condyler epiphysis.
Inter-condylar eminence is well pronounced. Fossa of sulcus
muscularis is well represented with the edge of condylus
lateralis. Tuberositas is also well preserved in the specimen.
*ns archaeological record
#

APPENDIX K
INTRODUCTORY CHOICE AND HELP PAGES
 The interface between the database materials and the user
can be modified to suit your needs. An exercise to show how this
is done is included in tutorial one below. Here there is part of
the general text of the current introductory and help pages. It
should be noted that the records to specify pages of year dates
have not been included here, apart from one small sample to show
their nature. Likewise all but one of the 'Help' pages has been
omitted. If you want to modify these and need the full text
please look at the actual text in \muscat\macros\cds\intro.txt.

 The introduction and help pages appear as a number of con
trol (A) records, help (H) records or text (T) records. These
can be added in either as part of intro.txt, or as single re
cords. The (abridged) text is as follows:

*i A.1
*g1 Welcome to the Cambridge Database System
{g1} Press '\vH\n' for Help: {u 34 1 \H.1\=h}
{g0} \vI\nntroductory text: {u 34 1 \T.10\=i}
{g0} \vT\nutorials: {u 34 1 \T.20\=t}
{g0} \vC\nontents: {u 34 1 \T.30\=c}
{g0} \vF\nree text query: {u 34 1 \A.0\=f"sl"}
{g0} \vS\ntructured query: {u 34 1 \A.2\=s}

103

{g0} \vB\noth free text with structured: {u 34 1 \A.2\=b"sl"}
#

*i A.2
*g1

Select one or more of the following:

{g1}\vY\near {u21 1\A.4\=y}
{g0}\vO\nther date {u21 1:1=o">enter as yyyy or
yyyy/mm or yyyy/mm/dd"}
{g1}\vP\nerson involved {u21 1:2=p">enter surname>lc"}
{g1}\vL\nocality name {u21 1:3=l">enter locality name>lc"}
{g1}\vE\nthnographic group {u21 1:4=e">enter group name>lc"}
{g1}\vM\nedium of recording {u21 1\A.3\=m}
{g1}\vS\nource of material {u21 1:7=s">enter name>lc"}
{g1}\vV\nideodisc frames {u21 1:6=v">enter a frame number"}

#

*i A.3
*g1
MEDIUM OF RECORDING
{g0:5"sketches"} sketch
{g0:5"films"} film
{g0:5"photographs"} photograph
{g0:5"sound"} sound
{g0:5"artefacts"} artefact
{g0:5"maps"} map
#

*i A.4
*g1
Please select from among the following date ranges:
{g1}Up to 1879 {u16 0\A.5\}
{g0}1880 - 1919 {u16 0\A.6\}
{g0}1920 - 1959 {u16 0\A.7\}
{g0}1960 or after {u16 0\A.8\}
#

*i A.5
*g1
{g1} 1847:{:1"1847"}
1855:{:1"1855"}
1874:{:1"1874"}
1875:{:1"1875"}
1876:{:1"1876"}

104

{g0} 1877:{:1"1877"}
1878:{:1"1878"}
1879:{:1"1879"}
#

*i T.19
*g1 COPYRIGHT

*g1 Copyright Cambridge Experimental Videodisc Project,1989
*g1 The Project encourages educational and research uses of
the material on the videodisc and computer disc. Copyright in
some of the material, however, is held by particular
individuals and institutions (see Acknowledgements). Please
consult the Project, therefore, if such use entails copying
onto other media. *g1 The visual material on the
videodisc can be used independently or in conjunction
with the indexes, texts and associated retrieval software
produced by the project.
*g1 The computer software, the Cambridge Database System (c),
is copyright. *g1 All enquiries for purchase or licences to
use the data or software without a videodisc system should be
sent to: Rivers Video Project, Dept. of Social Anthropology,
Free School Lane, Cambridge CB2 3RF

*g1 All enquiries for purchase or licences to use the data
or software with an interactive videodisc should be made to:
Cambridge Interactive, Barnwell House, Barnwell Drive,
Cambridge CB5 8UJ (O223-214893). #

*i T.30
*g1 TABLE OF CONTENTS
*g1 {\T.31\} By name of collector or author
*g1 {\T.41\} By medium or source
#

*i A.98
*g1 \v 'Full record retrieval'\n {u10 l+10} to retrieve
 by the records.{l-10}
*g1 \v 'Data retrieval'\n {u10 l+10} to retrieve by the data
(images
or text). {l-10}
*g1 \v 'Caption retrieval'\n {u10 l+10} to retrieve by a list of
short
captions to the records.
#

APPENDIX L. HOW THE VARIOUS FIELDS ARE INDEXED; A SUMMARY
 While it is recognised that the particular fields which have
been described in chapter two will only partially satisfy some

105

users. This appendix will explain how the full system described
in the manual works. This will allow you to edit the macros. A
simpler, automatic, way of setting up indexing and other
specifications is described in the CDS Interactive manual.

Fields that are not indexed at all
 At present, the following fields are not indexed at all in
the system (i.e. terms from these fields are not put into the
index).

*t - longer text
*ns - notes
*qv - see also
*z - size
*r - archival references
*f - form or function

These can hold letters, numbers, or a mixture of the two and are
treated as 'string' fields.

Fields that are indexed for free text but not structured
queries.
 At present the following fields are indexed so that you
can find their contents through free text queries, but do not
appear in the table of 'structured' queries. (Structured queries
can, in fact, be made on these terms in a rather more complex
way by using 'q' or 'embedded queries, as explained elsewhere.)

*u - short description
*k - keywords

Fields that are indexed for free text queries, but not for
'relevance feedback'.
 In this case the terms are not included in working out and
presenting relevance feedback and query expansion. The purpose
of this category is to deal with information which you may want
to search for, but would be unhelpful when using query
expansion. At present this applies only to the 'title' field,
*c. It may be that you would like to look for all 'fieldnotes',
as in the title. But it only obscures query expansion to have
these terms included in the query expansion algorithm.

Fields that are indexed for free text queries and also for
structured queries.

106

 These fields are indexed once, but are accessible in two
ways, through the free text system and through the structured
query page on the screen. They divide into five sub-categories:

i. A person or *kp field. This allows you to give a forename,
surname and detail (e.g.Mr).

ii. An 'ethnic group' or *ke field. This allows you to have a
main part and a detail, of the form Angami <Eastern. The possi
bility of groups, with sub-parts, may be useful.

iii. A 'location' or *kl field. This deals with geographical
places and areas and may again have a main part and a detail, as
with ethnic group.

iv. A 'date' or *kd field. This expects a string in the form of
some numbers, as described in chapter 2.

v) A 'medium' or *m field. This we use to indicated whether
something is a photograph, film, map or whatever.

Fields that contain fields.
 We also have three fields which can contain other fields.
These are as follows:

*acq - an acquisition field
*prod - a production field
*coll - a collector field

These could contain within them certain sub-fields as follows:

*f - function or form
*p - person
*d - date
*e - ethnic group *l - location
*r - reference number
*n - note

Thus you could have *acq *p, meaning the person who acquired
something. This is a potentially useful category of fields. All
the fields *p *d *e *l are indexed for free text searching,
under all three of the categories. The one exception is *acq *p
which, often describing a museum or archive which has acquired
an artefact, has been dealt with differently. It is not indexed
for free text searching, but appears in the structured query
choices as 'Source of material'. The *f *r *n fields are not
indexed at all.

107

Group fields.
 A explained in Chapter 2, there are occasions when a group
field (*g) is very useful. At present the group field can
contain the following sub-fields, u m t k kp ke kl z n.

Integer fields
 As explained in more detail elsewhere, integer fields are
fields which can only contains integers or numbers and are
fields upon which mathematical calculations can be made. We have
not had any use for such fields.

Total list of permitted fields.
How fields are treated Codes

Not indexed at all t n qv z r
Indexed for free text queries u k
Free text, not query expansion c
Both free text and structured
 'person' type kp
 'group' type ke
 'location' type kl
 'date' type kd
 'medium' type m
Fields that contain fields acq prod coll
 'date' or 'location' type d l
 'person' type sub-field p
Integer fields -

APPENDIX M
CROSS REFERENCES BETWEEN RECORDS.
Introduction; embedded actions.
 It is possible to move between records in various ways, as
well as merely cross-referring to them by a *qv as indicated
above. In essence it is possible to embed a cross- reference to
another record in the database. This is done by placing it
within curly brackets, { }, within the record as follows:
 some textual materials... { embedded action }

This will allow the user to make a choice when reaching the
portion in { } brackets.

108

The three kinds of cross-reference or embedded actions.
 When a record is printed, a cross-reference of this kind
appears on the screen as a selectable box (or 'icon'). When
this is selected the record which is cross-referred to is shown.
How it is shown, and subsequent actions, are determined by the
use of different kinds of slashes placed within the curly
brackets.

A passing cross-reference to another record.
 In the case of back-slashes, \ \ , selecting the box will take
you to that record. A subsequent selection of 'R' or Return
takes you back to the record from which the original selection
was made. (Thus it is like a subroutine call in computer
programs).

 For instance, supposing you were looking at a diary entry
about a dance. The diarist might mention that he had taken a
photograph of the dance and you might want to be given the
opportunity to see the photograph and then return to the text.
The photograph in question is at frame 2000 on the videodisc,
and being a still frame is coded as B.2000.

 The way to allow you to look at this would be to insert:

"Then I took a photograph of the dance {\B.2000\}. It
was a beautiful sight...."

Having seen the photograph, you return to the text.

A cross-reference taking you to a new record.
 If you were to use forward slashes, / /, you would be taken
to another record or picture. But on selecting R or Return you
would not go back to the original record. It is thus a form of
jump or 'Goto'. Thus if you had the following:

(record 25).....some text...{/T.2000/}.....more text...

On selecting the box you would go to text record 2000. But on
pressing 'Return' you would return to the record associated with
text 2000, rather than the original record 25. In fact this form
of cross-reference cannot be used in 'R-records', the normal
indexed records.

109

Cross-references to certain menu selection possibilities.
 The third type of cross reference, with vertical slashes, or
|, is rather different. Only one cross-reference of this form
should appear in a record. Its presence causes certain menu
selection possibilities to appear on the menu bar at the bottom
of the screen. it takes the form:

{|A.200|}

An important example of its use is as follows.

Cross-references between one page of text and the next.
 If you have a page of text, you will need a way to look at
the next or previous pages, or to go back to a table of
contents. For instance, you may be reading a diary. You have on
the screen a certain day and want to go to the next or previous
days. Or you may want to go back up to the page of contents.
This can be done using the vertical bar cross references.

 At the end of a page of text you can type:

{|T.u T.p T.n|} where u,p and n are integers or numbers. This
will give rise to the menu bar items UP PREVious and NEXT.
Selection of one of these will take you up to the higher level
of the table of contents, back to the previous page of the
diary, or on to the next text, as specified.

 Supposing you have a diary whose table of contents is
numbered as text record 100, i.e. T.100, and which has three
entries numbered T.200, T.201, T.202. Supposing further that you
are at the entry numbered T.2O1 and want to be able to move
around the diary. You could put at the end of the text record
number T.2O1 the following:

{|T.100 T.200 T.202|}

That would enable you to move up, back and forward. The method
for setting this automatically is explained in exercise of Tuto
rial 1 in Part C. An item in the selection above may be sup
pressed by using 0 or zero. For example:

{|0 T.200 0|}

would give a selection possibility for a previous page, but no
choice for up or next.

110

Cross-references from 'R' records.
 Elsewhere it is explained that R-records are the indexable
items in the database. A retrieval request will retrieve R-re
cords and only R-records. An R-record is a complete item of
information in itself, or it may refer to further information in
the system. In the latter case you should again use the {|...|}
cross-reference. For instance:

{|T.200|} - would take you across to a text record

{|B.2000|} - is a reference to a still image
 When this is put in, a menu item, SHOW will appear at the
bottom of the computer screen. Selection of this will take you
to the cross-referred item, whether text or image. On pressing R
or Return, you will return to the R-record from which one has
come.

Printing specifications within cross-references.
 It may be the case that you will want to specify how
something to which you cross-refer is to appear on the screen.
This is possible by using 'print' commands within the { } or
curly brackets. An example of what would be typed is as follows:

some text....{g1 u20 1 \T.1217\}....some text.....

This would take you to text record 1217, and lay it out on the
screen by obeying the various commands g1 u20 1. These simple
layout controls are as follows.

Some print layout controls.
 It is possible to put print controls into the A, T and H
records. Examples of their use will be found in Appendix K.
These print controls should be put inside { } brackets. Thus, to
move to the next page, you would type {n}. As will be seen in
Appendix K, it is also possible to use *g1 and *g0 in certain
circumstances to create new lines. The main print layout
controls are as follows:

g N' - output N blank lines (for instance g1 will output
 one blank line)

l=n (r=n) - set the left (or right) margin to n

l+n (r+n) - increase the left (or right) margin by n

l-n (r-n) - decrease the left (or right) margin by n

111

d n - go to the next page if within n lines of the bottom

n - newpage

s - space

t m n - tab to position m leaving an n space gap

u m n - as above, but ignoring the left margin setting

p c - output punctuation character c

c < - set right justify position

> n - right justify to n

v n vertical drop to n

Ranges of non-textual items.
 It is possible to specify ranges. This is done by giving the
start and end number, separated by "=" or an equals sign. Thus
you could have the following example:

B.100=108 - meaning photographs 100 to 108

Thus a cross-reference of the form {\B.101=108\} would, if se
lected, take you to a set of photographs, which could be looked
at one after another.

 In the same way you can refer to moving film, as follows:

F.1000=1500 - moving film, from frame
 number 1000 to frame number 1500

In this case, on selecting some film, the first frame of the
film would be shown. You can then use controls to play it
backwards and forwards, at ordinary speed or in slow motion.

 It is possible to combine these in a list, for example:

some text...{\B.216 * B.387=390 * F.2189=3000 * B.22\}...text..

This would allow you to look at a series of still and moving
images. These lists must not contain R. T. or A. records, but
just images on the videodisc.

Associating a string of text with a cross-reference.
 It is possible to associate a piece of text with a

112

cross-reference by putting a string ('....' or "...." or /..../)
after the cross-reference.

 An example would be : {\A.14\ ">Name of author"}

This would mean that ">Name of author" would appear on the
screen after the box. This enables you to provide guidance on
what is being asked. An actual example of its use will appear
later.

Cross-references to programs outside the database.
 There is also a special method of invoking commands outside
the CDS 2000 system. This is done by using the \X.0\ reference,
followed by the commands within inverted commas. For instance,
if you wanted some MSDOS commands to be obeyed, you could insert
in a record:

{\X.0\ "MSDOS XCOPY c:\jo*.txt a:"}

The command within the inverted commas would be obeyed. Upon
completion of the external command, control returns to CDS 2000
at precisely the point from which the command was invoked.

APPENDIX N
HOW TO MAKE AN EMBEDDED QUERY
How to make an embedded query, using 'Q' records.
 A powerful feature of the system is the possibility of
adding an 'embedded query' from anywhere in the system. Thus you
could be in a record and allow a user to run a sub-query from
that record by pressing on a box, and then return to the record.
One major use of this, for instance, is in setting up a table of
contents. A list of options can be presented, each one with a
box. For example, you could have:

photographs taken by J.P.Mills
photographs taken by J.H.Hutton
photographs taken by W.G.Archer

and so on. Each would have a box against it holding an embedded
query which you have set. On selecting this, the query would be
executed and you would be able to see all the relevant photo
graphs.

Embedded queries use a 'Q' (Query) record. They take the follow
ing form:

113

{\Q.n\">A>B>C>D"}

where

n is an integer or number
A,B,C,D are pieces of text
> is any character not in A,B,C,D (the sign > is a good one)

It is important not to end with a fifth >.
But you can leave out >, as in the following:

{\Q.n\">A>B"}

If, however, you leave out earlier text fields, for example B
and C, then you must remember to put in the > for them, as
follows:

{\Q.n\">A>>>D"}

This is the structure, the contents is the following:

n = the number of items to be retrieved, for instance you might
want just to show the first 2O photographs, in which case this
number can be set at 2O. It is possible to set it at a higher
number than the actual number of items; if you think there are
about 34O photographs and want to see them all, you can put in
400 as the number.

A is a single character, indicating in what 'retrieval style'
the items are to be shown. As explained in detail elsewhere,
these are as follows:

 r = record retrieval
 d = data retrieval
 c = caption retrieval

The default is record retrieval, so if this field is left blank
the query will be in record retrieval mode.
B is a structured or Boolean query, make up of the following:

 'term' and/or/minus 'term'

The terms must be in either single quotes or slashes, thus
'house' or /house/. You can use and/or/minus or the signs & | -
 in their place.

The query is read from left to right, thus it will assume that
'sheep' or 'goat' and 'Greece', means find all items which have
either sheep and Greece or goat and Greece. If the structure
starts to get complicated, then brackets may be used to indicate

114

the structure as with normal Boolean queries.

C is where you can specify various parameters (as described in
detail elsewhere under 'The structure of A-records', the
contents of an "s" string.). For present purposes, the only
thing which you are likely to need is:

 s = stem with the Muscat stemming algorithms

D is a free text query, which like all such queries can be in
upper or lower case etc.

Thus :

A can be blank (r is assumed)

B can be blank - pure free text query

C can be blank (no stemming)

D can be blank - pure structured query

Some examples:

{\Q.200\">c>'M=sketch'"} - will present a caption list of the
first two hundred sketches (M stands for 'medium').

{\Q.500\">c>'P=Mills/ JP' or 'P=Mills' and 'M=photographs'"} -
 will present a caption list of the first five hundred
photographs taken by J.P.Mills or Mills.

{\Q.1O\">d>>s>girls combing hair"} - will present the first ten
items concerning girls combing hair, in data retrieval mode,
having 'stemmed' the words.

{\Q.1O\">r>'D=1936' and 'M=photographs'>s>girls combing hair"} -
 will present the first ten items, in record retrieval mode,
concerning girls combing hair in photographs in 1936.

 It should be noted that you can put ordinary terms into a
structured query with this system. For instance, while in the
free text system you can only search in a probabilistic way,
here it would be possible to do queries of the form, "show me
all the red and green cloths, but not those which also had blue
in". But it is important to remember that you will need to know
what the "stemmed" or suffix-stripped version of the query term
is, for this is what is held in the index. For instance, it is
no good looking for 'marriage', you have to use the shortened
version 'marri'.

115

 If you want to find out these forms, the best way is to use
the 'q' system (as explained in Appendix F), and put in a word
you want to use, and see whether it is abbreviated. If these
terms are used in the structured part of the embedded query they
will have to be within single inverted commas.

(Normally, if a term is not found, it is ignored. It is possible
to 'force' the query to report on terms that are not found. This
is done as another option when entering the system. For
instance: "c-dbsys with f", will produce these reports)

 If you have been taken to a list of items through such an
embedded query, you can still 'mark' and save relevant items in
the normal way.

 APPENDIX O.
 DISCATEL; THE ELEMENTARY DISC CATALOGUING SYSTEM
INTRODUCTION
 The 'Discatel' system is a free-standing and simplified
system that allows you to set up your own database of any size,
create the record structure you would like, and define how the
records are to be printed out. For those who have relatively
simple data, consisting of records and fields, it is ideal for
setting up a structured database.

 Any of the small programs described below can be changed by
using your word-processor or editor. (Use the word-processor in
non-document or unformatted mode, if possible, since the format
ting codes in a word-processor may cause a problem.)

SETTING UP YOUR OWN FORMAT
The discatel system sets up a simple format consisting of the 26
letter codes, A to Z. These are treated in the simple version in
the ways described below.

The documents are printed on the screen and on paper in order of
fields, with certain words to indicate what the fields mean etc.

Obviously, for other applications, it will be necessary to
modify this simple version. Here is how to do it.

Changing the format.
The formatting specification is set up by a macro (a small pro
gram) which is in the following directory: \muscat\macros\disca

116

tel and is called makef.txt

(Note that the words in square brackets in the following short
programs or 'macros' are comments, not part of the program. In
the actual macros they are prefaced by a backwards slash, to
show that they are comments.)

\muscat\macros\discatel\makef.txt
[]
makef !F from
rec ([put here the list of fields which are declared
 below. But not ids and id1, which are subfields
 of id. The order in this bracketed list is
 unimportant.]

 id
 head text
 a b c d e f g h i j k l m n o p q r s t u v w x y z
)
id (ids id1) ids = s id1 = i [identity number]
head=s [general heading for the record]
text=s [general field for text]

[data fields: alter or extend as necessary]

a=s b=s c=s d=s e=s f=s g=s h=s i=s j=s k=s l=s m=s
n=s o=s p=s q=s r=s s=s t=s u=s v=s w=s x=s y=s z=s

[remember that the order of declaration a=s to z=s
determines the order in which DISCAT will display
the records on the screen. Also remember that you
can only add new fields at the end of this list
unless you are prepared to throw the DB file away
and recreate it. If you do add further fields, 'discatel'
will not work with 'muscatel' unless the latter is
modified to include the new fields.]
!

(The '=s' indicates that the field will be treated as a
'string' of letters or numbers, in other words not an integer or
number on which calculations can be made. It is possible to
declare the field to be an integer (see main manuals).

The number of fields can thus be expanded with two or more
letter codes, up to a total number of 255.

How the material is to be indexed

117

It is necessary to specify how each field is to be indexed, and
this means modifying two macros. The first is in the delbase
directory, and called ispec.txt. It is as follows.

\delbase\ispec.txt
i *head s m1 r; [*head is used as a 'work' field here. Change
 with caution.]

 [alter the following as necessary:]

i *a p 'A='; [the prefix is A=. Used in a Boolean query
mode usually. Options L, U and R also useful.
 L - put term into lower case; U means upper,
 R means that the term is offered to the user
 in the query expansion process.
 See Muscat Manual 3rd ed., p. 130.]
i *b p 'B=';
i *c p 'C=';
i *d p 'D=';
i *e p 'E=';
i *f p 'F=';
i *g p 'G=';
i *h p 'H=';
i *i p 'I=';
i *j p 'J=';
i *k s r m1; [s is suffix strip; m1 means no one letter
words]
i *l p 'L=';
i *m p 'M=';
i *n p 'N=';
i *o p 'O=';
i *p p 'P=';
i *q p 'Q=';
i *r p 'R=';
i *s p 'S=';
i *t p 'T=' u; [make this one upper case]
i *u s r m1; [s is suffix strip; m1 means no one letter words]
i *v p 'V=';
i *w p 'W=';
i *x p 'X=';
i *y p 'Y=';
i *z p 'Z=';

 [put your stop list here:]

k 'about' 'after' 'again' 'against' 'all' 'an' 'and' 'ani'
'down' 'dur' 'each' 'except' 'few' 'first' 'for' 'from' 'into'
'is' 'it' 'more' 'most' 'out' 'over' 'own' 'per' 'same' 'so'
'some' 'to' 'togeth' 'too' 'under' 'until' 'up' 'us' 'veri'

118

'was'
'ar' 'as' 'at' 'be' 'been' 'befor' 'below' 'between' 'both'
'but' 'by' 'can' 'further' 'had' 'ha' 'have' 'how' 'if' 'in'
'no' 'nor' 'not' 'of' 'off' 'on' 'onc' 'onli' 'onto' 'or'
'other' 'such'
'than' 'that' 'the' 'their' 'then' 'there' 'through' 'which'
'while' 'why' 'will' 'with'

h *a [header code for terms = *a (use the first available data
field)]

This sets up the ways in which fields are to be indexed. All but
three are indexed for boolean/structured searching. The fields
*k, *u are indexed for free text searching, being 'suffix
stripped'. The field t is put into upper case.

You can modify this indexing specification in three main ways.
One of these is to add further fields. Thus, having added the
field 'lo' to the makef.txt macro earlier, this could be added
to the above in the appropriate place, which might be after the
last line (i *z p 'z=';) or, if you are starting from scratch,
wherever the new field(s) have been put in the makef.txt macro.

Secondly, you can alter the way in which the fields are treated.
If you want to have further fields for 'free text' searching,
they can be modified to look like the *k and *u fields above.

Thirdly, the 'stop list' is a list of words which will not be
indexed, because they are too common/uninteresting. You can add
to or delete words from this list.

The second indexing macro to change is in the delbase directory,
and called iexp.txt.

\delbase\iexp.txt
h goto *id \ make sure it has an id-number
write 1 atlev 1

re (try s switch (

 [Put the different fields into the categories (case ...)
 below, depending on the retrieval needs. If there are no
fields for a particular category, delete everything down to
the next case expression.]

 [Fields to be indexed as a single term (structured/Boolean
mode)]

119

 case *e case *l case *t case *z
 (all entry)

 [Fields to be indexed word at a time (free text mode):]

case *u case *k
 repeat(bef uc or lc l re uc or lc r entry)

 [Fields to be indexed in both of the above ways:]

case *c
 (all entry
 b repeat(bef uc or lc l re uc or lc r
 to x as *head $x s (all entry))
)

 [Fields to be indexed as year-dates (four consecutive
digits)]

case *d
 (bef (l times 4 digit r) entry)

) next)

This indicates that the different fields are to be treated in
four different ways:
*e *l *t *z - are to be indexed as a single term (in other
words, if there are more than one word in one of these fields,
it should still only be indexed as one term, thus 'north
America' will be treated as all one term, and not broken into
'north' and 'America')

*u *k - will be indexed a word at a time (for free text search
ing)

*c - will be indexed in both of the above ways

*d - will be indexed as year-dates (four digits)

If you wanted to add a some more fields, for instance the fields
*a *b and *lo, then you would need to decide whether you wanted
them treated in one of these special ways. If so, it would need
to be added in as appropriate as 'case *a' 'case *b' 'case *lo'
in the appropriate lines above.

120

Setting up the structured query screen
 When you go into the structured query screen, and make
choices, you will see the choices appear on the right side of
the screen, with a prefixed letter, for example 'C:'. You may
want to make this prefix more informative, putting in your own
word in place of a letter. This can be done as follows:

You will need to edit the following macro:

\delbase\dspec.txt

h *c [this defines the caption field]
e {
 [alter as necessary. The f 'A:' means that A: appears
 on the right hand side of the structured query system
to
 indicate terms in category *a.]
b 1 p 'A=' f 'A:';
b 2 p 'B=' f 'B:';
b 3 p 'C=' f 'C:';
b 4 p 'D=' f 'D:';
b 5 p 'E=' f 'E:';
b 6 p 'F=' f 'F:';
b 7 p 'G=' f 'G:';
b 8 p 'H=' f 'H:';
b 9 p 'I=' f 'I:';
b 10 p 'J=' f 'J:';
b 11 p 'K=' f 'K:';
b 12 p 'L=' f 'L:';
b 13 p 'M=' f 'M:';
b 14 p 'N=' f 'N:';
b 15 p 'O=' f 'O:';
b 16 p 'P=' f 'P:';
b 17 p 'Q=' f 'Q:';
b 18 p 'R=' f 'R:';
b 19 p 'S=' f 'S:';
b 20 p 'T=' f 'T:'; b 21 p 'U=' f 'U:';
b 22 p 'V=' f 'V:';
b 23 p 'W=' f 'W:';
b 24 p 'X=' f 'X:';
b 25 p 'Y=' f 'Y:';
b 26 p 'Z=' f 'Z:';
/

 If field 'T' was going to be a field for the time of year,
you could change that line to:

121

b 20 p 'T=' f 'Time:';

and then this would appear on the right hand side of the screen,
when one had chosen a term in that field, for instance 'Time:
morning'.

Printing out the results.
You can change the way in which a record is printed out on the
screen. This is specified by the macro called pspec.txt in the
delbase directory, as follows:

\delbase\pspec.txt
d d (a) g1;
d *rec (t) g0;
d *id (a) k;
d *ids (a);
d *id1 (f) '.' (il) z '-';
d *head (a) g1 '\v' + '\n';
d *text (a) g1;

 [put any other d-directives here, for example, as follows:]

d *c (a) 'Title: \v' l=12 + '\n' l=0; [highlight the caption]
d *d (f) g1 'Date: ' l=12 (il) ', ' (t) l=0;
d *e (f) g1 'Region: ' l=12 (il) ', ' (t) l=0;
d *l (f) g1 'Country: ' l=12 (il) ', ' (t) l=0;
d *q (a) g1 'Duration: ' l=12 + l=0;
d *t (f) g1 'Series: ' l=12 (il) ', ' (t) l=0;
d *u (a) g1 u12 1 l=12 + l=0;
d *z (f) g1 'Tape no. ' l=12 (il) ', ' (t) l=0;
d *k (f) g1 'Topics: ' l=12 (il) ', ' (t) l=0;

 [In brief, the various letters and numbers above mean the
following. For a fuller description, see the section on
printing within Muscatel, in the Muscat Manual , 3rd edn.,
pp.189-193.]

 g1 - put out on a line by itself with 1 blank line preceding
 '....' - output text
 '\v'...'\n' - highlight the material between
 l=12 - if this line overflows indent overflow material by
 12 spaces (similarly l=0).
 + - output the actual field
 (f) - what to do if the field is the FIRST of a list
of fields with the same code
 (l) - similarly LAST

122

 (i) - similarly INTERMEDIATE
 (il) - means (i) or (l)
 (t) - how a terminate a list of fields with the same code
 (a) - means (f) or (i) or (l)
 u12 1 - put the next bit of data at character
 position 12 (counting from 0). For example...

The small test database 'sample.txt' shows how the above looks;
it can be modified to fit your data, since obviously something
developed for a video tape library, which is what the example
format above was developed for, will not be appropriate.

Another macro specifies how the record is to be printed out on
paper. It is called print.txt, in the \muscat\macros\discatel
directory, as follows:

\muscat\macros\discatel\print.txt
<from/a/r,to/k,width/k,opts/k>
copy <d->pspec to !pspec from2
w<width$70>
<opts>
!
print <from> to <to$*> with !pspec

This basically takes the screen print specification and prints
it out, so it is unlikely that you will need to modify it.

HOW TO ENTER DISCATEL AND SET UP YOUR OWN DATABASE
Once you have a formatting system, or using the preliminary one
that is available, you can enter the system, as follows:

Go into the 'Delbase' directory.

Then type muscat discatel

You will now be in the discatel system, with a 'muscat>' prompt.

(If you want to work in another directory of your own, you can
do so, but will need to type c-system when you get the muscat>
prompt, otherwise the input is assumed to be that from the cur
rent directory.)

In order to set up a database, you type

c-create

123

You will then get a prompt, asking for the size in bytes. If you
want a database of 100k , then type 100000.

If at a later point you want to extend this database to add more
material, this can be simply done by typing
 c-extend

When you will again be asked to specify the number of bytes that
you want to add. (In other words, if you already have a database
of 100000 and want to double its size to 200000, you would
c-extend by another 100000.)

Once you have an empty database set up, then get your text file
which must have the suffix '.txt,, for instance 'sample.txt'.

Build the text file with

c-build (e.g. c-build sample to sample)

Number it with c-number (e.g. c-number sample to sample1)

(to start with you can answer 'R' and 100 to the queries about
record number and where to start from. If you add further re
cords, remember that their numbers must not overlap with earlier
ones, otherwise the earlier ones will be overwritten.)

Then add the file into your database with c-add

(for example, c-add sample1).

This is an updatable databse, so if you want to add a further
file, you can just do the same as above, adding in another file
with c-add.

Once you have a small database, you can enter it by going:

c-disc

When you want to leave it, select the 'Exit' box or type the
letter x.

Then to leave discatel, type 'stop'.

You can examine and modify individual records within the data
base, as explained in the manual.

CHANGING THE INTRODUCTORY SCREEN PAGES
When discatel sets up the database, it automatically adds the

124

introductory pages which are contained in intro.txt. These are
as follows:

\delbase\intro.txt
[| A.1 - adds extra text
 A.2 - take each line of the form:

 {g0}A: { :1">enter text for A>lc"}

and alter as necessary. 'A:' is what appears on the screen,
'enter text for A' is what appears on the top line. 'lc' means
treat what is typed by the user as lower case, with an initial
capital.]

*id A.1
*head This is the Discatel retrieval system

*text
{g0} \vF\nree text query: {u 34 1 \A.0\=f"sl"}
{g0} \vS\ntructured query: {u 34 1 \A.2\=s}
{g0} \vB\noth free text with structured: {u 34 1 \A.2\=b"sl"}

#

*id A.2
*head Structured Query:

*text

Select one or more of the following categories:
{g0}
{g0}A: { :1">enter text for A>lc"}
{g0}B: { :2">enter text for B>lc"}
{g0}C: { :3">enter text for C>lc"}
{g0}D: { :4">enter text for D>lc"}
{g0}E: { :5">enter text for E>lc"}
{g0}F: { :6">enter text for F>lc"}
{g0}G: { :7">enter text for G>lc"}
{g0}H: { :8">enter text for H>lc"}
{g0}I: { :9">enter text for I>lc"}
{g0}J: {:10">enter text for J>lc"}
{g0}K: {:11">enter text for K>lc"}
{g0}L: {:12">enter text for L>lc"}
{g0}M: {:13">enter text for M>lc"}
{g0}N: {:14">enter text for N>lc"}
{g0}O: {:15">enter text for O>lc"}
{g0}P: {:16">enter text for P>lc"}
{g0}Q: {:17">enter text for Q>lc"}
{g0}R: {:18">enter text for R>lc"}

125

{g0}S: {:19">enter text for S>lc"}
{g0}T: {:20">enter text for T>u"}
{g0}U: {:21">enter text for U>lc"}
{g0}V: {:22">enter text for V>lc"}
{g0}W: {:23">enter text for W>lc"}
{g0}X: {:24">enter text for X>lc"}
{g0}Y: {:25">enter text for Y>lc"}
{g0}Z: {:26">enter text for Z>lc"}

#

You may want to modify this, adding help pages, or expanding the
introductory materials. A fuller explanation of how this is done
is contained in the Manual, Appendix K.

TRYING OUT THE SYSTEM
Before modifying anything, it is worth just seeing what a small
sample set of data looks like when put through the supplied
macros. There is a small set of 50 records in
\delbase\sample.txt. These records describe videotapes in a
library. The first five records are as follows:

*c 'The Other Kenya':
*d 9.1980
*e E. Africa
*l Kenya
*q 50 mins
*t Horizon
*u People who live on the land and in the slums of modern
Kenya ("The side the tourist doesn't see").
*z 1
#

*c 'Behind the Horoscope':
*d 11.1980
*q 50 mins
*t Horizon
*u A French psychologist's research into the facts and
fictions of astrology.
*z 1
#

*c 'Colombian Roots':
*d 10.1980
*e S. America
*l Colombia
*q 50 mins

126

*t The World About Us
*u Tracing the origins of Colombian traditions and society,
within the three main ethnic groups.
*z 2
#

*c 'Walkabout to Hollywood':
*d 11.1980
*e Oceania
*q 50 mins
*t The World About Us
*u An Australian Aborigine who is now an actor in Hollywood
tries to reconcile the two very different worlds in which he
lives.
*z 2
#

*c 'Roots': Origins of American folk music;
*d 12.1980
*e N. America
*q 50 mins
*t The World About Us
*u Three folk festivals visited.
*z 2
#

You could go into discatel, as described above, then create a
small database of 1OOk, and build, number and add in this file,
sample.txt. Then you can search for one of these records and see
how it appears on the screen, and what it looks like when
printed out. (To print out directly from the screen, press
'control' and function key 7 together). You will then see what
the indexing and printing specifications described above
actually do to a record in this format.

WHERE THE SYSTEM IS
The discatel system is contained in two different places. Most
of the programs are in a directory called DELBASE.

 (Note: when copied from the installation disc, the DELBASE
directory is a sub-directory of the MUSCAT directory. It is not
necessary that it is kept there, so you can make a directory off
your root called delbase, and copy the files into that once they
are on your machine. In the following, it is assumed that you
have set up Delbase as a sub-directory off your root directory.)

The Delbase directory contains the following programs:

sample.txt (a small sample to try out the system)

127

pspec.txt (how the material is to be printed out)
intro.txt (the introductory screen pages of choices etc)
db.da (the current database, if there is one)
dspec.txt (what appears on the screen)
ispec.txt (how a document is to be indexed)
iexp.txt (how a document is to be indexed)
introduc.txt (a longer version of the introduction screen pages)

In a separate sub-directory of macros, \muscat\macros\discatel ,
are contained a number of the usual macros, as follows:

create.txt getrecs.txt f8.txt system.txt print.txt q.txt
listm.txt makef.txt del.txt list.txt add.txt update.txt
disc.txt f7.txt number.txt build.txt index.txt extend.txt
getmrecs.txt f1.txt init.txt

The only one of these that you may want to change is makef.txt,
in other words the macro to make a format and also print.txt,
the printing specification.

CONCLUSION
 'Discatel' is a relatively simple system for setting up a
database structure and adding records. It can be used alongside
the more powerful systems described in the Manual. The Manual
describes in detail some of the stages alluded to above, for
instance building, numbering and adding records.

 'Discatel' may be used in conjunction with 'elementary
muscat' or 'Muscatel' to sort, multiply, print records, as
described in Appendix P below. An interactive, screen-driven,
version, is available in the CDSi system, described in Appendix
V below.

APPENDIX P.
 USING DISCATEL WITH MUSCATEL
Introduction
 One of the considerable advantages of 'discatel' is that, as
long as you confine yourself to the 26 single letter codes, *a
to *z, then all the pre-written programs in 'muscatel'
(elementary muscat), can be used without any problems. A
detailed description of Muscatel is contained in the Muscat
Manual, p.207. Here we will give one or two examples of how
this would be done.

128

SORTING AND PRINTING FILES
 Let us suppose that you were working on a library of video
tapes, in which the various fields were as follows:

*t name of the series
*c title of the program
*u content and short description
*k keywords and categories
*l locality (country)
*e ethnographic area (e.g. E.Africa)
*q length of the program
*z tape reference number
*d date of making of film

Suppose that you had set up a format and indexing system to fit
these categories (as described in the 'Discatel' system). You
then type in the following three records into a text file (which
we can call 'video.txt' for this exercise):

*c 'The Other Kenya':
*d 9.1980
*e E. Africa
*l Kenya
*q 50 mins
*t Horizon
*u People who live on the land and in the slums of modern
Kenya ("The side the tourist doesn't see").
*z 1
*k tourism
#

*c 'Behind the Horoscope':
*d 11.1980
*q 50 mins
*t Horizon
*l France
*u A French psychologist's research into the facts and
fictions of astrology.
*z 1
*k magic
#

*c 'Colombian Roots':
*d 10.1980
*e S. America *l Colombia
*q 50 mins
*t The World About Us
*u Tracing the origins of Colombian traditions and society,

129

within the three main ethnic groups.
*z 2
*k ethnicity *k music
#

You now want to print these out in various different ways, which
involves firstly re-sorting them, and then specifying an appro
priate way they should appear in a print-out.

A complete list of titles, alphabetically
Firstly, you might want a print-out of all the videos in alpha
betical order of title of the series. In other words you want to
sort on the *c fields. In the print-out, you might decide that
it would look neater if the miscellaneous notes (*n), the
persons named in the record (*p) and the ethnographic area (*e)
were left out.

To do this, enter delbase, where your file is, and enter
muscatel by typing

muscat el

Then type:

g-build video to video

This builds the file, which can then be sorted by typing:

g-sort video to video1 fields *c kill *n*p*e

This will sort the file on the *c field and delete the *n *p *e
fields from the records.

You now need to print this out, in a way that would be suitable.

You could devise a print specification, calling it pspec1.txt,
and keeping it in the Delbase file.

It might look as follows:

w 65 (sets the width of the record)
o *rec *c *t *u *k *l *q *z (gives the order of printing)
d L1 (a) l=0 g1;
d L0 (a) l=8 g0;
d *rec (t) p.;
d *c *t *u *k *l *z *q *d (a) s + ',';
d *z (a) ' Tape ' (t) ',' ;

(the above are some print directives, as explained in the Disca

130

tel and Muscatel documentation elsewhere, which specify the
placing of the fields on the page etc.)

Now that you have a print specification, called pspec1.txt, you
can print out the records which you have sorted as follows:

g-print video1 to video2 with pspec1

If you now leave muscatel, by going 'stop', and look at the file
video2.txt with your word-processor, you will see the following:

'Behind the Horoscope':.
 Horizon, A French psychologist's research into the facts
 and fictions of astrology., magic, France, 50 mins, Tape
 1, 11.1980.

'Colombian Roots':.
 The World About Us, Tracing the origins of Colombian
 traditions and society, within the three main ethnic
 groups., ethnicity, music, Colombia, 50 mins, Tape 2,
 10.1980.

'The Other Kenya':.
 Horizon, People who live on the land and in the slums of
 modern Kenya ("The side the tourist doesn't see").,
 tourism, Kenya, 50 mins, Tape 1, 9.1980.

You can then edit this if necessary, and print it out in the
normal way.

A complete list of titles classified by location.
 Or you might decide you wanted the list sorted by location
rather than title. To do this you would take the same file
video.txt and do the following:

You would enter delbase, where your file is, and enter muscatel
in the same way by typing:

muscat el

Then type:

g-build video to video

This again builds the file, which can be sorted by typing:

g-sort video to video1

131

 If, as often happens, there are several different references
to a field within one record, in other words repeated fields, it
may be useful to replace one record containing such repeated
fields with several records.

 In this case, for example, there might be more than one *e
field referred to in a film record. To do this, you would
precede the sorting stage above by using the 'multiplying
records' command, g-mult0 and g-mult1, as described in the
Muscat Manual,p.179. In this instance, therefore, we would type
the following:
 g-mult0 video to video1 field *e

Thus, if a record contained more than *e a duplicate would be
made, so that it could be indexed in several places.

Then you would proceed by typing:

g-sort video1 to video2 fields *e*l kill *u*t*d*q*p*n

This will sort on ethnographic area (*e) first, and then within
that on locality (*l). It will delete the fields after "kill",
which are not needed for this particular print-out.

You would then print out the result by typing:

g-print video2 to video3 with pspec2

The print specification, which you can set up by typing as
pspec2.txt in the same directory, could, for instance, be the
following.

w 65
o *rec *c*t*u*k*p*e*l*q*n*z
d L2 (a) l=0 g1;
d L2 (a) l=4 g0;
d L0 (a) l=8 g0;
d *rec (t) p.;
d *c*t*u*k*p*e*l*z*q*n*d (a) s + ',' ;
d *z (a) 'Tape ' (t) ',';

If you followed the stages above, on the small sample of three
records above, the result would look as follows:

 E. Africa. Kenya.
 'The Other Kenya':, tourism,Tape 1.
 S. America. Colombia.
 'Colombian Roots':, ethnicity, music,Tape 2.

132

A list of titles classified by topic
 Finally, you might like to have the titles arranged by
topic, that is by the *k field. Using the same print specifica
tion as the previous example, but "killing" different fields,
you could type the following series of commands:

muscat el

g-build video to video

g-mult0 video to video1 field *k

g-sort video1 to video2 fields *k*c kill *t*d*q*p*c*n

g-print video2 to video4 with pspec2

(In the last line, we have used 'video4' so that the final
result does not overwrite the video3.txt file from the previous
exercise, which you might want to keep.)
The result of doing the above on the sample three records would
look as follows:

 ethnicity. 'Colombian Roots':.
 Tracing the origins of Colombian traditions and society,
 within the three main ethnic groups., S. America,
 Colombia,Tape 2.
 magic. 'Behind the Horoscope':.
 A French psychologist's research into the facts and
 fictions of astrology., France,Tape 1.
 music. 'Colombian Roots':.
 Tracing the origins of Colombian traditions and society,
 within the three main ethnic groups., S. America,
 Colombia,Tape 2.
 tourism. 'The Other Kenya':.
 People who live on the land and in the slums of modern
 Kenya ("The side the tourist doesn't see")., E. Africa,
 Kenya,Tape 1.

Again, this could be edited with a word-processor if necessary.

Conclusion
 There are a number of other useful and relatively simple
programs described in the Muscat Manual for listing out,
merging, numbering, retrieving and other tasks. By using
'Discatel' it is possible to use all of these ready made macros.

133

APPENDIX Q.
 HOW TO ADD NEW FIELDS.
Introduction
 It is possible to modify the format and indexing system so
that new fields are added. A simple way to do this
automatically, is described in Appendix V. This only works with
the simpler, 26-field, indexing structure. It is therefore worth
describing what needs to be done to change a more complex
structure, if you should need that.

 Several changes are needed. The format has to be changed;
the indexing macro has to be modified; the print specifications
have to be altered and the 'build' macro has to be modified. The
way in which each of the fields is treated is outlined in the
Manual and in Appendix L. Here we will give an example to show
how a change can be made.

 We decided that a different set of data needed a different
field structure. Instead of producer, collector and acquirer of
museum objects, we wanted to devise a structure which would deal
with a census of humans and their livestock and crops. So we
needed the fields 'person' , 'animal' and 'crop'.

 Within these fields we wanted a number of sub-fields. So we
chose some letters which had not been used before, a b h j o q.
(It would of course be possible to use a combination of other
letters, ab abc abcde etc.) We wanted each of these to be a
'string' field, and each of them to be indexed in the same way
as the *u and *k fields, that is word by word. The way we
modified the format can be seen as follows.

Changing the format
 The original formatting macro, \muscat\macros\cds\makef.txt
was as follows:

[]
makef $formats\cds from
rec (num i c store u m t k kp ke kl kd
 z prod coll acq g qv ns recr g0 g1)
num = i \ Record identity generated by Muscat
i (is i1 i2) is = s i1 = i i2 = i \ identity number
c = s \ general class of object
store (store1 stored) \ storage location
store1 = s stored = s \ main part and detail
u = s \ simple name
m = s \ medium (e.g. photograph)

134

t = s \ full name or description
k = s \ keywords
kp = s \ person or people keywords
ke = s \ ethnographic group keywords
kl = s \ locality keywords
kd = s \ date keywords
z = s \ size (ignore if photo contains a ruler)
prod (f p d e l r n) \ production
coll (f p d e l r n) \ collection
acq (f p d e l r n co) \ acquisition
g (i store u m t k kp ke kl z n) \ info about parts
pt = s \ title of part
qv = s \ "see also"
ns = s \ general notes
f (f1 fd) \ "function" word
f1 = s fd = s \ main part & detail
p (p1 p2 pd) \ person
p1 = s p2 = s pd = s \ surname, forename & detail
d (d1 dd) \ date
d1 = s dd = s \ main part and detail
e (e1 ed) \ ethnographic group
e1 = s ed = s \ main part & detail
l (l1 ld) \ locality
l1 = s ld = s \ main part & detail
r = s \ reference number
n = s \ note
recr (rp rd) \ recorder
rp = s rd = s \ person & date

g0 = s g1 = s \ general text fields
!

This was edited, using a word processor, to look as follows:
(the changes are underlined and in bold).
 []
makef $formats\cds from
rec (num i c store u m t k kp ke kl kd
 z pers anim crop g qv ns recr g0 g1)
num = i \ Record identity generated by Muscat
i (is i1 i2) is = s i1 = i i2 = i \ identity number
c = s \ general class of object
store (store1 stored) \ storage location
store1 = s stored = s \ main part and detail
a = s
b = s
h = s
j = s
o = s
q = s

135

u = s \ simple name
m = s \ medium (e.g. photograph)
t = s \ full name or description
k = s \ keywords
kp = s \ person or people keywords
ke = s \ ethnographic group keywords
kl = s \ locality keywords
kd = s \ date keywords
z = s \ size (ignore if photo contains a ruler)
pers (a b h j o q p)
anim (a b h j o q p)
crop (a b h j o q p)
g (i store u m t k kp ke kl z n) \ info about parts
pt = s \ title of part
qv = s \ "see also"
ns = s \ general notes
f (f1 fd) \ "function" word
f1 = s fd = s \ main part & detail
p (p1 p2 pd) \ person
p1 = s p2 = s pd = s \ surname, forename & detail
d (d1 dd) \ date
d1 = s dd = s \ main part and detail
e (e1 ed) \ ethnographic group
e1 = s ed = s \ main part & detail
l (l1 ld) \ locality
l1 = s ld = s \ main part & detail
r = s \ reference number
n = s \ note
recr (rp rd) \ recorder
rp = s rd = s \ person & date

g0 = s g1 = s \ general text fields
!

This new format then has to be installed. This is done by going
into Muscat and then type:

c-makef

then type

format \muscat\formats\cds
 If there are errors, they will be specified, otherwise the new
format will be installed.

Indexing

 Next, the way in which the indexing program works will need
to be modified. The original indexing macro is
\muscat\macros\cds\index.txt and is as follows:

136

<from/a/r,to/k/a/r>
copy to !ispec from

i d s v '' j '\^' m1 l ;
i *u*k r s v '' j '\^' m1 l ;
i *m v '' j '\^' p 'M=' ;
i *p2 v '/ ' j '\^' p 'S=' ;
i *pd v '/ ' j '\^' p 'P=' ;
i *ed v '/ ' j '\^' p 'E=' ;
i *ld v ' ' j '\^' p 'L=' ;
i *kd p 'D=' ;
i *store1 v '=' x = - p 'V=';

h *k \ header code for terms = *k
 \ now comes the stoplist:
k 'about' 'after' 'again' 'against' 'all' 'an' 'and' 'ani'
'down' 'dur' 'each' 'except' 'few' 'first' 'for' 'from' 'into'
'is' 'it' 'more' 'most' 'out' 'over' 'own' 'per' 'same' 'so'
'some'
'to' 'togeth' 'too' 'under' 'until' 'up' 'us' 'veri' 'was'
'ar' 'as' 'at' 'be' 'been' 'befor' 'below' 'between' 'both'
'but' 'by'
'can' 'further' 'had' 'ha' 'have' 'how' 'if' 'in' 'no' 'nor'
'not'
'of' 'off' 'on' 'onc' 'onli' 'onto' 'or' 'other' 'such'
'than' 'that' 'the' 'their' 'then' 'there' 'through' 'which'
'while' 'why' 'will' 'with'
'village'
!
indexx from <from> to <to> with !ispec exp

write 1 atlev 1

not find *is s eq 'T' \ avoid indexing purely text records
re (try switch (case *prod $ g setto *prod()
 case *coll $ g setto *coll()
 case *acq $ g setto *acq()
 case *store1
 s re (aft uc bef digit l re digit re ' '
 try ('=' re ' ' re digit) r to x
 $ x s (bef digit
 re hold (not times 5 digit
ins '0')
 all entry))
 case *u case *k case *c
 s re (bef uc or lc l re uc or lc r entry
n)
 case *m s (all entry)
 case *p1

137

 ($g code *acq s (all
to x as *p2)
 $ x s (all entry)) or
 (s (
 re (bef uc or lc l re uc or lc r
entry n)
 all to x as *pd
)
 try (next code *p2 to y $x s (e ins '/ '
ins y))
 $x s (all entry)
)
 case *kp
 s (re (bef uc or lc l re uc or lc r entry
n)
 all
 to x as *pd $x s (all entry)
)
 case *e1
 case *ke
 s (code *ke or $ g not code *acq
 re (bef uc or lc l re uc or lc r entry
n)
 all
 to x as *ed $x s (all entry)
)
 case *l1
 case *kl
 s (code *kl or $ g not code *acq
 re (bef uc or lc l re uc or lc r entry
n)
 b
 try (bef '(' l e r del)
 all to x as *ld $x s (all entry)
)
 case *d1
 case *kd
 s (code *kd or $ g not code *acq
 all to x as *kd
 $ x s (
 try (h bef '-'
 (bef('.'l bef '-'r to bit
 bef substring bit)
 all exch bit)
 or (all exch ''))
 re (b l bef '.' r to bit n r
del
 (bef '/') or e ins '/' ins
bit)
 b l times 4 digit r entry

138

 times 2 ('/' (digit digit) or (ins '0' digit) r
entry)
)
)
)
 next
)
!

This was modified as follows (modifications in bold,
underlined):
<from/a/r,to/k/a/r>
copy to !ispec from

i d s v '' j '\^' m1 l ;
i *u*k*a*b*h*j*o*q*p r s v '' j '\^' m1 l ;
i *m v '' j '\^' p 'M=' ;
i *p2 v '/ ' j '\^' p 'S=' ;
i *pd v '/ ' j '\^' p 'P=' ;
i *ed v '/ ' j '\^' p 'E=' ;
i *ld v ' ' j '\^' p 'L=' ;
i *kd p 'D=' ;
i *store1 v '=' x = - p 'V=';

h *k \ header code for terms = *k
 \ now comes the stoplist:
k 'about' 'after' 'again' 'against' 'all' 'an' 'and' 'ani'
'down' 'dur' 'each' 'except' 'few' 'first' 'for' 'from' 'into'
'is' 'it' 'more' 'most' 'out' 'over' 'own' 'per' 'same' 'so'
'some'
'to' 'togeth' 'too' 'under' 'until' 'up' 'us' 'veri' 'was'
'ar' 'as' 'at' 'be' 'been' 'befor' 'below' 'between' 'both'
'but' 'by'
'can' 'further' 'had' 'ha' 'have' 'how' 'if' 'in' 'no' 'nor'
'not'
'of' 'off' 'on' 'onc' 'onli' 'onto' 'or' 'other' 'such'
'than' 'that' 'the' 'their' 'then' 'there' 'through' 'which'
'while' 'why' 'will' 'with'
'village'
!
indexx from <from> to <to> with !ispec exp

write 1 atlev 1

not find *is s eq 'T' \ avoid indexing purely text records
re (try switch (case *pers $ g setto *pers()
 case *anim $ g setto *anim()
 case *crop $ g setto *crop()
 case *store1
 s re (aft uc bef digit l re digit re ' '

139

 try ('=' re ' ' re digit) r to x
 $ x s (bef digit
 re hold (not times 5 digit
ins '0')
 all entry))
 case *u case *k case *c case *a case *b case
*h
 case *j case *o case *q
 s re (bef uc or lc l re uc or lc r entry
n)
 case *m s (all entry)
 case *p1
 ($g code *crop
 s (all to x as *p2)
 $ x s (all entry)) or
 (s (
 re (bef uc or lc l re uc or lc r
entry n)
 all to x as *pd
) try (next code
*p2 to y $x s (e ins '/ ' ins y))
 $x s (all entry)
)
 case *kp
 s (re (bef uc or lc l re uc or lc r entry
n)
 all
 to x as *pd $x s (all entry)
)
 case *e1
 case *ke
 s (code *ke or $ g not code *crop
 re (bef uc or lc l re uc or lc r entry
n)
 all
 to x as *ed $x s (all entry)
)
 case *l1
 case *kl
 s (code *kl or $ g not code *crop
 re (bef uc or lc l re uc or lc r entry
n)
 b
 try (bef '(' l e r del)
 all to x as *ld $x s (all entry)
)
 case *d1
 case *kd
 s (code *kd or $ g not code *crop
 all to x as *kd

140

 $ x s (
 try (h bef '-'
 (bef('.'l bef '-'r to bit
 bef substring bit)
 all exch bit)
 or (all exch ''))
 re (b l bef '.' r to bit n r
del
 (bef '/') or e ins '/' ins
bit)
 b l times 4 digit r entry
 times 2 ('/' (digit digit) or (ins '0' digit) r
entry)
)
)
)
 next
)
!

Printing on the screen
 The way in which the records will appear on the screen is
controlled by the macro \muscat\cds\pspec.txt. This is as fol
lows:

\ w70 \ j\ j^
d *rec (t) g0;
\ d *num (a) 'Item ' + ':' g1;

d *i1 (a) ':'; d *i2 (a) z '-';
d *store (a);
d *c (a) + ':' s;
d *u (a) s '\v' l+2 + p. l-2 '\n';
d *m (a) s + p.;
d *t (a) l+4 g1 + p. l-4 g0;
d *prod (a) g0 l+14 'Production:' u14 1 + p. l-14;
d *coll (a) g0 l+14 'Collection:' u14 1 + p. l-14;
d *acq (a) g0 l+14 'Acquisition:'u14 1 + p. l-14;
d *k (f) g0 (il) ', ' (t) '.';
d *kp *ke *kl *kd (f) s (il) ', ' (t) '.';
d *z (a) ' Size: ' ;
d *l*p*d*e*f (f) s (il) ', ' (t) p; ;
d *ld*pd*dd*ed*fd (a) s '(' + ')';
d *p (a) [*p1*pd (a) k][*p2 (a)]
 s +
 [*p2 (a) k][*p1 (a)][*pd (a) s '(' + ')']
 s + p; ;
d *n (a) s '(' + ')';

141

d *qv*ns*r (a) g0 '(' + ')';
d *recr (a) g1 '[' + ']';
d *rd (a) ':';
d *g (f) l+8 g1 + l-8 (il) l+8 g0 + l-8;

d *g0 (a) g0; d *g1 (il) g1;

(Note: the above macro presents a screen with the number of the
record not shown; another macro 'on.txt' is identical to the
above but contains as line four:

d *i (a) 'Record number ' + g2;

This has the effect of printing the record number at the top of
the screen when one goes into the database with 'numbers on'.
This is useful for certain types of error correction.)

This was modified as follows (changes underlined):

\ w70
\ j\ j^
d *rec (t) g0;
\ d *num (a) 'Item ' + ':' g1;
d *i1 (a) ':'; d *i2 (a) z '-';
d *store (a);
d *c (a) + ':' s;
d *u (a) s '\v' l+2 + p. l-2 '\n';
d *m (a) s + p.;
d *t (a) l+4 g1 + p. l-4 g0;
d *pers (a) g0 l+14 'Person:' u14 1 + p. l-14;
d *anim (a) g0 l+14 'Animals:' u14 1 + p. l-14;
d *crop (a) g0 l+14 'Crops:'u14 1 + p. l-14;
d *k (f) g0 (il) ', ' (t) '.';
d *kp *ke *kl *kd (f) s (il) ', ' (t) '.';
d *z (a) ' Size: ' ; d *p*a*b*h*j*o*q (f) s (il) ', ' (t) p; ;
d *ld*pd*dd*ed*fd (a) s '(' + ')';
d *p (a) [*p1*pd (a) k][*p2 (a)]
 s +
 [*p2 (a) k][*p1 (a)][*pd (a) s '(' + ')']
 s + p; ;
d *n (a) s '(' + ')';
d *qv*ns*r (a) g0 '(' + ')';
d *recr (a) g1 '[' + ']';
d *rd (a) ':';
d *g (f) l+8 g1 + l-8 (il) l+8 g0 + l-8;

d *g0 (a) g0; d *g1 (il) g1;

142

The print specification for 'q' and for hard copy
 Printing out on paper is controlled by the print specifica
tion \muscat\cds\dspec.txt, which is as follows:

w70
j\ j^
d *num (a) 'Item ' + ':' g1;
d *i1 (a) ':'; d *i2 (a) z '-';
d *i *store *c (a) s;
d *u (a) g1 + p.;
d *m (a) s + p.;
d *t (a) l+4 g1 + p. l-4 g0;
d *prod (a) g0 l+4 'Prod: ' + p. l-4;
d *coll (a) g0 l+4 'Coll: ' + p. l-4;
d *acq (a) g0 l+4 'Acq: ' + p. l-4;
d *k (f) g0 (il) ', ' (t) '.';
d *kp *ke *kl *kd (f) s (il) ', ' (t) '.';
d *z (a) ' Size: ' ;
d *l*p*d*e*f (f) s (il) ', ' (t) p; ;
d *ld*pd*dd*ed*fd (a) s '(' + ')';
d *pd (a) ', ';
d *n (a) s '(' + ')';
d *qv*ns*r (a) g0 '(' + ')';
d *recr (a) g1 '[' + ']';
d *rd (a) ':';
d *g (a) l+8 g0 + l-8;

This was modified as follows (changes underlined):

w70
j\ j^
d *num (a) 'Item ' + ':' g1;
d *i1 (a) ':'; d *i2 (a) z '-';
d *i *store *c (a) s;
d *u (a) g1 + p.;
d *m (a) s + p.;
d *t (a) l+4 g1 + p. l-4 g0;
d *pers (a) g0 l+4 'Person: ' + p. l-4;
d *anim (a) g0 l+4 'Animals: ' + p. l-4;
d *crop (a) g0 l+4 'Crops: ' + p. l-4;
d *k (f) g0 (il) ', ' (t) '.';
d *kp *ke *kl *kd (f) s (il) ', ' (t) '.'; d *z (a) ' Size: ' ;
d *p*a*b*h*j*o*q (f) s (il) ', ' (t) p; ;
d *ld*pd*dd*ed*fd (a) s '(' + ')';
d *pd (a) ', ';
d *n (a) s '(' + ')';
d *qv*ns*r (a) g0 '(' + ')';
d *recr (a) g1 '[' + ']';

143

d *rd (a) ':';
d *g (a) l+8 g0 + l-8;

Listing out the data
 To list out (print) from the built records in a file, it is
necessary to modify the macro \muscat\macros\cds\list.txt

The original macro was as follows:

[from/a/r,to/k,gap]
print from [from] to [to$*] with

w 58
e
d d (a) s x f s;

d *rec (a) g[gap$1] e (t) ' #';
d *i *store *c *num *t *k *m *z *n *ns *p *d *l *r *n
 (f) s x f s (il) ' *' f s;

d *i1 (a) ':'; d *i2 (a) z '-';
d *f1 *p1 *d1 *l1 *e1 *store1 *rp *is
 (il) s x f s;

d *fd *pd *dd *ld *ed *stored *rd
 (a) s '<';

d *p2
 (a) s '/';

d *g *prod *coll *acq *recr *ns *g0 *g1
 (a) g0 x f s;

d *f (f) e s (il) s x f s;
!

The modified version, with the changes underlined, is thus:

[from/a/r,to/k,gap]
print from [from] to [to$*] with

w 58
e
d d (a) s x f s;

d *rec (a) g[gap$1] e (t) ' #';
d *i *store *c *num *t *k *m *z *n *ns *p *d *l *r *n
 (f) s x f s (il) ' *' f s;

144

 d *i1 (a) ':'; d *i2 (a) z '-';
d *f1 *p1 *d1 *l1 *e1 *store1 *rp *is
 (il) s x f s;

d *fd *pd *dd *ld *ed *stored *rd
 (a) s '<';

d *p2
 (a) s '/';

d *g *pers *anim *crop *recr *ns *g0 *g1
 (a) g0 x f s;

d *f (f) e s (il) s x f s;
!

Building the data
 Finally, it is necessary to modify the macro which specifies
how the record is to be built, \muscat\macros\cds\build.txt. The
original macro was as follows:

[from/a/r/h,to/k/a/r]
build from [from] to [to] with

m *f/p *p/p *d/p *l/f *store/r *recr/f

a *coll *f1 < *fd # \ Here and below, '<' is a detail indicator
a *prod *f1 < *fd #
a *acq *f1 < *fd #
a *e *e1 < *ed #
a *f *f1 < *fd #
a *p *p1 / *p2 < *pd #
a *l *l1 < *ld #
a *d *d1 < *dd #
a *store *store1 < *stored #
a *recr *rp / *rd #
a *g *i1 - *i2 = *i2 #
i *i *is . *i1 : *i1 - *i2 = *i2 #
!

This was modified to take account of the new field structure as
follows (changes underlined):

[from/a/r/h,to/k/a/r]
build from [from] to [to] with

m *f/p *p/p *d/p *l/f *store/r *recr/f

a *pers *f1 < *fd # \ Here and below, '<' is a detail indicator

145

a *anim *f1 < *fd #
a *crop *f1 < *fd #
a *e *e1 < *ed #
a *f *f1 < *fd #
a *p *p1 / *p2 < *pd #
a *l *l1 < *ld #
a *d *d1 < *dd #
a *store *store1 < *stored # a *recr *rp / *rd #
a *g *i1 - *i2 = *i2 #
i *i *is . *i1 : *i1 - *i2 = *i2 #
!

Conclusion
 This completes the changes that have to be made for this
adjustment. It should be stressed that changes should not, if
possible, be made to the formatting and indexing macros once you
have already built some data into a database. It is very easy to
make a small mistake and to corrupt the earlier material. Thus
it is best to start afresh, creating a new database and building
the data anew if a change is made to the format. If it is
absolutely necessary to add in a new field after a database has
been partly created, make sure that the field is added at the
end of the declarations in the makef.txt macro.

APPENDIX R
FULL TEXTS OF THE CAMBRIDGE DATABASE MACROS
All these are in the \muscat\macros\cds directory, with the
extension .txt. They are given here in alphabetic order. Since
some lines have been moved to the left, as they were otherwise
too wide to print in this Manual, you are advised to look at the
originals in the computer if you need the exact spacing.

ACQR
Sorts records by archival reference (*r) in the acquisition
(*acq) field.

<from/a/r,to/k/a/r>
keyx from <from> to $WORK\f3 exp
write 1 atlev 1
find *acq g find *r write 1 atlev 0
!
u-sort $WORK\f3 to $WORK\f4
retx $WORK\f4 to <to> exp

146

lev 0
!

ADD
Adds a file to the database.

<from/a/r,style/k>
c-index<style> <from> to $WORK\f1
keyx $WORK\f1 to $WORK\f2 exp
(lev 1 goto *i write 1 atlev 1) or (setf /0 write 1)
!
u-sort $WORK\f2 to $WORK\f3 opt fo
DBadd from $WORK\f1 from2 $WORK\f3 file <d->db with
p i *is !

BATCHADD
To batch add a file, running build/liste1/number/add

<from/a/r,lettercode/k/a/r,startingat/k/a/r>
c-build <from> to $work\fr
c-liste1 $work\fr to $work\fa
c-build $work\fa to $work\fs
c-number $work\fs to $work\fr lettercode
 <lettercode> startingat <startingat>
c-add $work\fr

BK1
To create a raw contents list for a book.

<from/a/r,to/k/a/r>
echo creates raw contents list for book
keyx <from> to $WORK\f1 exp
selectto x *i *u *r
$x write 1
!
print $WORK\f1 to <to> with
d *rec (a) g0;
d *i (a) '*g0 {/' + '/}';
d *i1 (a) '.'; d *i2 (a) z '-';
d *u (a) s;
d *r (a) s '(' + ')';
!

147

BKSPLIT
Splits books and manuscripts into a text and record part

<from/a/r,tor/k/a/r,tot/k/a/r>
retx <from> to F0 exp
goto *is s (l e r exch 'R')
goto *prod
!
c-kill F0 to <tor> fields *g1
edx <from> <tot> exp
repeat (read 0 to x
 $x selectto y *i*u*g0*g1*kd
 $y write 1)
!

BUILD
To build a record so that it is ready to go into a database.

[from/a/r/h,to/k/a/r]
build from [from] to [to] with
m *f/p *p/p *d/p *l/f *store/r *recr/f

a *coll *f1 < *fd # \ Here and below, '<' is a detail indicator
a *prod *f1 < *fd #
a *acq *f1 < *fd #
a *e *e1 < *ed #
a *f *f1 < *fd #
a *p *p1 / *p2 < *pd #
a *l *l1 < *ld #
a *d *d1 < *dd #
a *store *store1 < *stored #
a *recr *rp / *rd #
a *g *i1 - *i2 = *i2 #
i *i *is . *i1 : *i1 - *i2 = *i2 #
!

CHECK0
To check that certain major fields are in a record.

<from/a/r>
retx from <from> to $WORK\fz exp
not (
(goto *i adv not code *i) and
(goto *c adv not code *c) and
(goto *t adv not code *t) and
goto *prod

148

)
!

CHECKID
To check the identity fields in a file of records.

<from/a/r>
checkid from <from> to $WORK\fz with
knr
i *is
e1000
!
t from
Faulty recs (if any) left in $WORK\fz
!

CREATE
To create an empty database (DB), prompting for size in
megabytes

<kilobytes/a/r>
DBcreate <d->DB bytes <kilobytes>000 blocksize 6144 with
k1
!
c-build $cds\intro to !R
c-add !R

DATEIND
 To sort a batch of records by the *prod *d field (production
date).

<from/a/r,to/k/a/r>
| to sort a batch of records by the *prod*d field :
keyx from <from> to $WORK\f0 exp
write 1 atlev 1
find *prod g find *d1 s (

bef digit l bef '-' or q r to x
$z setto *d1 ''
$x s re (bef digit l re digit r to y $z s (ins y ins '/'))
$z write 1 atlev 0

)
!
u-sort $WORK\f0 to $WORK\f1
retx $WORK\f1 to <to> exp
lev 0
!

149

DBSYS
To go into the database (DB) system.

<on/k,add/k,marksto/k,opts/k,with/k,numbers/k>
disc file <d-><on$db> pspec $cds\<numbers$pspec> with
s *u
h *u
e {
m69
<opts>
b 1 p 'D=' f 'Date:';
b 2 p 'P=' f 'Person:';
b 3 p 'L=' f 'Locality:';
b 4 p 'E=' f 'the';
b 5 p 'M=' f 'Recording medium:';
b 6 p 'V=' f 'Frames:';
b 7 p 'S=' f 'Source:';
v
/
<with>
-
m 1 15
d 1 15
!

(Note: The 'v' in the list of <opts>, changes the screen so that
returning to a previous screen is achieved by pressing 'Esc',
and help screens are found by pressing function key 7 (F7). If
the 'v' is removed, a version which has 'R' for return, and 'H'
for help, will be installed.)

(Note: Various settings can be made after the <with> line. The
minus sign, - , alters the screen setting; 'v' could be inserted
here to automatically link the computer to a videodisc; z could
be put in to turn the setting to one appropriate for a
monochrome (non-colour) screen; the letter i could be inserted,
which would inhibit the system so that none of the function keys
work when interrogating a database. Thus one could have a list,
such as:

<with>
-
z
v
i
m 1 15
d 1 15
!

150

DEL
To delete a single record from a database.

<recnum/a/r>
c-build to $WORK\f1 from
#H *i
*i <recnum> #
!
dbadd from $WORK\f1 file <d->db with
dp
i *is
!

DISC
To go into the Direct Access (DA) Database.

<on/k,add/k,marksto/k,opts/k,with/k,numbers/k>
disc terms <d-><on>daterm recs <d-><on>darec pspec
$cds\<numbers$pspec> with
s *u
h *u
e {
m 69
<opts>
b 1 p 'D=' f 'Date:';
b 2 p 'P=' f 'Person:';
b 3 p 'L=' f 'Locality:';
b 4 p 'E=' f 'the';
b 5 p 'M=' f 'Recording medium:';
b 6 p 'V=' f 'Frames:';
b 7 p 'S=' f 'Source:';
v
/
<with>
-
m 1 15
d 1 15
!

(see note at end of the DBSYS macro above, where various options
and defaults which can also be set here are explained)

DUMP
 A version of 'print' which shows the hierarchical structure of
the fields (useful for de-bugging).

<from/a,to/k>

151

print from <from> to <to$*> with
d d (a) g0 x f s l+2 + l-2;
!

F1
Function key 1, plus control; saving a record to a temporary
file within a database.

<>
c-list !rec-1 to !text-1
sed !text-1
c-build !text-1 to !rec-1
c-index !rec-1 to !work
DBadd from !work file <d->\db with
n p i *is
!

F6
Function key 6, plus control; to obtain a wide directory listing
of the current directory.

<>
msdos dir /w
msdos pause

F5
Function key 5, plus control; to delete the current record from
the database.

<>
DBadd from !r file <d->db with
dp i *ids
!

F7
Function key 7, plus control; to print out the current record.

<>
c-print !r to /L

F8

152

Function key 8, plus control; going out of a database
temporarily into the main Muscat/Discat system.

<>
reenter Discat>

GETDISCM
To get marked records from a DA file

<markfile/a/r,to/k/a/r>
retx from <markfile>.mks to !temp-f1 exp
lev 1
!
fromcat !temp-f1 to !temp-numbers
getrecs to <to> from !temp-numbers recs <d->darec
delsf !temp-f1 !temp-numbers

GETMRECS
To get marked records from a DB file

<markfile/a/r,to/k/a/r>
retx from <markfile>.mks to !temp-f1 exp
lev 1
!
fromcat !temp-f1 to !temp-numbers
getrecs to <to> from !temp-numbers file <d->DB
delsf !temp-f1 !temp-numbers

GETRECS
To get marked records

<query/a/r,to/k/a/r>
copy to !temp-commands from
bfrom <query>
numbersto !temp-numbers
stop
!
q file <d->DB from !temp-commands pspec
!
getrecs file <d->DB from !temp-numbers to <to>
delsf !temp-numbers !temp-commands

IED1
Moving data from a group (*g) field into an identity (*i) field.

153

<from/a/r,to/k/a/r>
edx <from> <to> exp
re (read 0 to x
 $ x($i setto *rec()
 h try (goto *g
 each *g (goto *i to y as *rec*i
 $i mate y *i/f)
)
 mate i *i/r
 write 1)
)

INDEX
Specifies the indexing that is to occur; which fields to index
in what ways, and which words and fields not to index.

<from/a/r,to/k/a/r>
copy to !ispec from

i d s v '' j '\^' m1 l ;
i *u*k r s v '' j '\^' m1 l ;
i *m v '' j '\^' p 'M=' ;
i *p2 v '/ ' j '\^' p 'S=' ;
i *pd v '/ ' j '\^' p 'P=' ;
i *ed v '/ ' j '\^' p 'E=' ;
i *ld v ' ' j '\^' p 'L=' ;
i *kd p 'D=' ;
i *store1 v '=' x = - p 'V=';

h *k \ header code for terms = *k
 \ now comes the stoplist:
k 'about' 'after' 'again' 'against' 'all' 'an' 'and' 'ani'
'down' 'dur' 'each' 'except' 'few' 'first' 'for' 'from' 'into'
'is' 'it' 'more' 'most' 'out' 'over' 'own' 'per' 'same' 'so'
'some'
'to' 'togeth' 'too' 'under' 'until' 'up' 'us' 'veri' 'was'
'ar' 'as' 'at' 'be' 'been' 'befor' 'below' 'between' 'both'
'but' 'by''can' 'further' 'had' 'ha' 'have' 'how' 'if' 'in'
'no' 'nor' 'not''of' 'off' 'on' 'onc' 'onli' 'onto' 'or'
'other' 'such''than' 'that' 'the' 'their' 'then' 'there'
'through' 'which' 'while' 'why' 'will' 'with' 'village'
!
indexx from <from> to <to> with !ispec exp

write 1 atlev 1

not find *is s eq 'T' \ avoid indexing purely text records
re (try switch (case *prod $ g setto *prod()

154

 case *coll $ g setto *coll()
 case *acq $ g setto *acq()
 case *store1
 s re (aft uc bef digit l re digit re ' '
 try ('=' re ' ' re digit) r to x
 $ x s (bef digit
 re hold (not times 5 digit ins '0')
 all entry))
 case *u case *k case *c
 s re (bef uc or lc l re uc or lc r entry
n)
 case *m s (all entry)
 case *p1
 ($g code *acq
 s (all to x as *p2)
 $ x s (all entry)) or
 (s (
 re (bef uc or lc l re uc or lc r entry
n)
 all to x as *pd
) try (next code *p2 to y
$x s (e ins '/ ' ins y))
 $x s (all entry)
)
 case *kp
 s (re (bef uc or lc l re uc or lc r entry
n)
 all
 to x as *pd $x s (all entry)
)
 case *e1
 case *ke
 s (code *ke or $ g not code *acq
 re (bef uc or lc l re uc or lc r entry
n)
 all
 to x as *ed $x s (all entry)
)
 case *l1
 case *kl
 s (code *kl or $ g not code *acq
 re (bef uc or lc l re uc or lc r entry
n)
 b
 try (bef '(' l e r del)
 all to x as *ld $x s (all entry)
)
 case *d1
 case *kd
 s (code *kd or $ g not code *acq

155

 all to x as *kd
 $ x s (
 try (h bef '-'
 (bef('.'l bef '-'r to bit
 bef substring bit)
 all exch bit)
 or (all exch ''))
 re (b l bef '.' r to bit n r
del
 (bef '/') or e ins '/' ins
bit)
 b l times 4 digit r entry
 times 2 ('/' (digit digit) or (ins '0' digit) r entry)
)
)
)
 next
)
!

KDIND
To sort a batch of records by the date (*kd) field.

<from/a/r,to/k/a/r>
\ to sort a batch of records by the *kd field :
keyx from <from> to $WORK\f0 exp
write 1 atlev 1
find *kd s (

bef digit l bef '-' or q r to x $z setto *d1 ''
$x s re (bef digit l re digit r to y $z s (ins y ins '/'))
$z write 1 atlev 0

)
!
u-sort $WORK\f0 to $WORK\f1
retx $WORK\f1 to <to> exp
lev 0
!

KILL
To kill (suppress) a field or fields from a file of records.

<from/a/r,to/k/a/r,fields/k/a/r>

156

keyx from <from> to <to> exp
to new
mateto new /k *rec/r <fields>
$new (next q) or write 1
!

KLIND
To link maps with synonyms (see klspec.txt for a description of
how this is done).

<from/a/r,to/k/a/r>
keyx from <from> to $WORK\f0 exp
write 1 atlev 1
re(goto *kl write 1 atlev 0 adv)
!
mapx $WORK\f0 to $WORK\f1 using $cds\control.txt exp
lev 0 entry
!
u-sort $WORK\f1 to <to>

LBRIEF
To print out only the short caption (*u) and identity (*i)
fields.

[from/a/r,to/k,gap]
print from [from] to [to$*] with

w 132
d d (a) k;

d *rec (a) g[gap$0] ;
d *i*is (a);
d *i1 (a) ':'; d *i2 (a) '-';
d *u (a) t20 1;
!

 LIST
To list out (print) from the built records in a file.

[from/a/r,to/k,gap]
print from [from] to [to$*] with

w 58
e
d d (a) s x f s;

157

d *rec (a) g[gap$1] e (t) ' #';
d *i *store *c *num *t *k *m *z *n *ns *p *d *l *r *n
 (f) s x f s (il) ' *' f s;

d *i1 (a) ':'; d *i2 (a) z '-';
d *f1 *p1 *d1 *l1 *e1 *store1 *rp *is
 (il) s x f s;

d *fd *pd *dd *ld *ed *stored *rd
 (a) s '<';

d *p2
 (a) s '/';

d *g *prod *coll *acq *recr *ns *g0 *g1
 (a) g0 x f s;

d *f (f) e s (il) s x f s;
!

LISTE1
To create an appropriae bracketing system for records.

^from/a/r,to/k^
print from ^from^ to ^to$*^ with

w 58
c e
d d (a) s x f s;

d *rec (a)
 [*i (f)
 [*is (a) k]
 '*i R.' +
 [*is (a) + '.']
 ' *store {|' + (il) s (t) '|}']
 [*i1 (a)]
 [*i2 (a) z '=']
 g1 e (t) ' #';
d *store *c *num *t *k *m *z *n *ns *p *d *l *r *n
 (f) s x f s (il) ' *' f s;

d *f1 *p1 *d1 *l1 *e1 *store1 *rp *is
 (il) s x f s;

d *fd *pd *dd *ld *ed *stored *rd (a) s '<';

d *p2

158

 (a) s '/';

d *prod *coll *acq *recr *ns *g0 *g1
 (a) g0 x f s;

d *g (a)
 [*i (f) '*store {\' (il) s (t) '\}']
 [*is (a) + '.']
 [*i1 (a)]
 [*i2 (a) z '=']
 g0 x f s;
d *f (f) e s (il) s x f s;
!

LISTM
To list out files of marked records (suitable for editing).

<from/a/r,to/k/a/r>
print from <from> to <to> with
w 70
c
d L2 (a) g1 '*g1 ' ;
d L1 (a) g0 '{l=0 g0 \' + '\ l=10} ';
!

MAKEF
To set up a format for the data.

[]
makef $formats\cds from
\ cds data format - based on Museum object format
rec (num i c store u m t k kp ke kl kd ka
 z prod coll acq g qv ns recr g0 g1)
num = i \ Record identity generated by discat
i (is i1 i2) is = s i1 = i i2 = i \ identity number
c = s \ general class of object
store (store1 stored) \ storage location
store1 = s stored = s \ main part and detail
u = s \ simple name
m = s \ medium (e.g. photograph)
t = s \ full name or description
k = s \ keywords
kp = s \ person or people keywords
ke = s \ ethnographic group keywords

159

kl = s \ locality keywords
kd = s \ date keywords
z = s \ size (ignore if photo contains a ruler)
prod (f p d e l r n) \ production
coll (f p d e l r n) \ collection acq (f p d e l r n co)
\ acquisition
g (i store u m t k kp ke kl z n) \ info about parts
pt = s \ title of part
qv = s \ "see also"
ns = s \ general notes
f (f1 fd) \ "function" word
f1 = s fd = s \ main part & detail
p (p1 p2 pd) \ person
p1 = s p2 = s pd = s \ surname, forename & detail
d (d1 dd) \ date
d1 = s dd = s \ main part and detail
e (e1 ed) \ ethnographic group
e1 = s ed = s \ main part & detail
l (l1 ld) \ locality
l1 = s ld = s \ main part & detail
r = s \ reference number
n = s \ note
recr (rp rd) \ recorder
rp = s rd = s \ person & date

g0 = s g1 = s \ general text fields
ka = s \ new field, put in 9.8.1989
co = i \ new field, put in 9.8.1989
!

NUMBER
To automatically number a file of records.

<from/a/r,to/k/a/r,lettercode/k/a/r,startingat/k/a/r>
edx <from> <to> exp
openout 1
$ n setto *rec(*i/r(*is '<lettercode>' *i1 <startingat> *i2 0))
re (read 0 to x
 $ x (mate n write 1)
 $ n (goto *i1 i add 1)
)
!

PRINT
To print out from the built records in a file.

160

<from/a/r,to/k,width/k,opts/k>
copy $cds\dspec to $WORK\fd from2
w<width$70>
<opts>
!
print <from> to <to$*> with $WORK\fd

Q
To go into the 'q' or query system.
<on/k,opts>
q file <d->db pspec $cds\pspec with
t v '' <opts$>
p 'CDS>'
!

SETUPIR
To set up a Direct Access (DA) database from a built file.

<from/a>
c-index <from> to \muscat\work\fs
edx \muscat\work\fs \muscat\work\ft exp
openout 1
re(read 0 to x
 $x(lev 1 goto *i write 1 atlev 1) or (setf /0 write 1)
)
!
u-sort \muscat\work\ft to \muscat\work\fr opt fo
DArec \muscat\work\fs file DArec with
i *is k1 n
!
DAterm \muscat\work\fr file DAterm with
k1 n
!

SORT
To sort a large batch of records.

<from/a/r,to/k/a/r,opts/k,size/k>
sort from <from> to <to> to2 &W0/<size$LA>
 work &W1/<size$LA> work2 &W2/<size$LA> with
<opts>
!

161

TERMSOF
To print out all of the terms of a single built record, to see
what they would be in the database.

<from/a/r,to/k>
c-index from <from> to $WORK\f1
print $WORK\f1 to <to$*> with
d d (a) g0 t4 1 "'" + "'";
d *rec (a) g0 k;
!

UPDATE
To add records to a database when they have already been added
in before and have only been slightly changed.

<from/a/r,style/k>
c-index<style> <from> to $WORK\f1
DBadd from $WORK\f1 file <d->db with
n p i *is
!

VOC0
To produce a diagnostic output of everything except the long
text (*t) and notes (*ns) fields.

{from/a/r,to/k/a/r,cutoff/k}
keyx from {from} to $WORK\f3 exp
goto *i write 1 atlev 1
re ((code *p or string()
 not(code *z or code *t or code *n or code *ns)
 write 1 atlev 0
 adv)
 or next)
!
u-sort $WORK\f3 to $WORK\f4 opt fo
edx $WORK\f4 $WORK\f3 exp
openout 1
repeat (read 0 to x
 $x (lev 1 $c setto *i2 0) or ($c i add 1)
 $c i try ((ls {cutoff$11} $x write 1) or
 (eq {cutoff$11} $*stored '...' write 1))

162

)
!
print $WORK\f3 to {to} with
w40 c
d L1 (a) g0 x s;
d L0 (f) l=8 g0 (il) s (t) l=0;
d *p1 (a); d *p2 (a) '/'; d *pd (a) '<';
d *is (t) ':';
d *i2 (a) z '-';
!

APPENDIX S
THE DISCATEL MACROS
 This contains 45 macros. A number of these are identical to
macros in the cds and el directories. The following are macros
which are not identical.

ADD
To add a file to the database.

<from/a/r>
c-index <from> to $WORK\f1
keyx $WORK\f1 to $WORK\f2 exp
(lev 1 goto *id write 1 atlev 1) or (setf /0 write 1) !
u-sort $WORK\f2 to $WORK\f3 opt fo
DBadd from $WORK\f1 from2 $WORK\f3 file <d->DB with
p i *ids
!

BATCHDEL
To delete a batch of files from the database.

<from/a/r,startingat/k/a/r>
c-build <from> to !a
c-delnumber !a to !b startingat <startingat>
DBadd from !b file <d->db with
dp i *ids
!

BUILD
To build a muscat record.

163

[from/a/r/h,to/k/a/r]
build from [from] to [to] with
i *id *ids . *id1 : *id1 - *id1 = *id1 #
!

CREATE
To create a database.

<kilobytes/a/r>
DBcreate <d->DB bytes <kilobytes>000 blocksize 6144 with
k1
!
c-build <d->intro to !R
c-add !R

DADISC.TXT
To enter a Direct Access (DA) database.

<with/k,opts/k>
copy to !discat-spec0 from
<opts>
!
copy to !discat-spec from !discat-spec0 from2 <d->dspec from3
<with>
-
!
<with/k>
disc terms <d->daterm recs <d->darec pspec pspec with !
discat-spec
delsf !discat-spec
delsf !discat-spec0

DEL
To delete a single record from the database.

<recnum/a/r>
c-build to $WORK\f1 from
#H *id *id <recnum> #
!
dbadd from $WORK\f1 file <d->DB with
d
i *ids
!

DELNUMBER

164

To delete a set of numbered records from the database.

<from/a/r,to/k/a/r,startingat/k/a/r>
edx <from> <to> exp
openout 1
$ n setto *rec(*id/r(*ids 'R'
 *id1 <startingat> *id1 0))
re (read 0 to x
 $ x (mate n write 1)
 $ n (goto *id1 i add 1)
)
!

DISC
To enter a database (DB).

<with/k,opts/k>
copy to !discat-spec0 from
<opts>
!
copy to !discat-spec from !discat-spec0 from2 <d->dspec from3
<with>
-
!
disc file <d->DB pspec <d->pspec with !discat-spec
delsf !discat-spec
delsf !discat-spec0

EXTEND
To extend a database.

<kilobytes/a/r>
DBextend file <d->DB to <d->DB2 bytes <kilobytes>000
msdos del <d->DB.da
msdos ren <d->DB2.da DB.da

INIT
 To initialize the system and set aliases.

||
alias c $macros\discatel\
alias f $macros\discatel\f
alias a $macros\cds\
format \muscat\formats\discatel

165

alias d ''

INDEX
To index a set of records.

<from/a/r,to/k/a/r>
indexx from <from> to <to> with <d->ispec exp <d->iexp

LIST
To print out a set of records, with codes.

[from/a/r,to/k]
print from [from] to [to$*] with
w 58
c e
d d (a) g0 x f s;
d *rec (a) g1 e (t) ' #';
d *ids (a);
d *id1 (f) '.' (il) z '-';
\ put any other d-directives here
!

LOADR
To load records from a DB to a DA database

<from/a/r,to/k/a/r>
DArec from <from> file <to> with
i *ids k1 n
!

LOADT
To load terms from a DB to a DA database

<from/a/r,to/k/a/r>
DAterm from <from> file <to> with
k1 n
!

MAKEF
To make a format.

166

[] makef !F from
rec (\ put here the list of fields which are declared
 \ below. But not ids and id1, which are subfields
 \ of id. The order in this bracketed list is
 \ unimportant.

 id
 head text
 a b c d e f g h i j k l m n o p q r s t u v w x y z
)
id (ids id1) ids = s id1 = i \ identity number
head=s \ general heading for the record
text=s \ general field for text

\ data fields: alter or extend as necessary

a=s b=s c=s d=s e=s f=s g=s h=s i=s j=s k=s l=s m=s
n=s o=s p=s q=s r=s s=s t=s u=s v=s w=s x=s y=s z=s

\ remember that the order of declaration a=s to z=s
\ determines the order in which DISCAT will display
\ the records on the screen. Also remember that you
\ can only add new fields at the end of this list
\ unless you are prepared to throw the DB file away
\ and recreate it.
!

PRINT
To print records.

<from/a/r,to/k,width/k,opts/k>
copy <d->pspec to !pspec from2
w<width$70>
<opts>
j \
!
print <from> to <to$*> with !pspec

RELOAD
To make a DA database out of a DB database.

<>
c-unloadt db.da to $work\f1
c-loadt $work\f1 to daterm
c-unloadr db.da to $work\f2

167

c-loadr $work\f2 to darec

SORT
To sort a set of records.

<from/a,to/k/a,fields/k/a,kill/k,opt>
skey from <from> to $work\f1 with f <fields>
k <kill>
!
sort from $work\f1 to <to> to2 $work\f2 work $work\f3 work2
$work\f4 with
<opt>
!

SYSTEM
To use the macros and files in another (specified) directory.
<directory/a/r>
alias d <directory>\

APPENDIX T
A QUICK START TO THE CDS INTERACTIVE SYSTEM
(Whenever you see ENTER, please press the 'Enter' (return) key.
When you see ESC, please press the ESCAPE key.)

Set up a sub-directory called 'database' (or some other name)
off your 'root' or top level of the hard disc

go into the newly created directory

type the letters: cdsi

select the "new" option by pressing the ENTER key

type in a name (for instance your own name) ENTER

press ENTER (which will give you 'yes' in the Select field)

move to right with right-pointing arrow ENTER

type in a name for the field, for instance 'title' (you can use
the backspace key to correct mistakes) ENTER

168

move with right-pointing arrow to 'Indexing' and ENTER

move down to 'Free Text Mode' and ENTER

move to the 'Name' field of *b and ENTER

type in 'author' and ENTER

press ESC (you will see the relevant 'macros' being written)

select 'Change size' by pressing ENTER

type the number 50 and ENTER

select 'Create Database' and ENTER
 select 'Edit Record Source Files' and ENTER

type a filename, for example 'test' and ENTER

type in five or six words (the title of a book)

press F5

type an author's name

press F3

(you can repeat the steps above if you want one or two more
records in your trial)

press ESC

select 'Add Records to Database'

press ENTER on the name of your test file

press any key when asked to do so (do not worry about the mes
sage 'No Data Files Found')

move to 'Use Database' ENTER

press the letter 'f' (for free text search)

press the letter 'f' again

type in one of the words you used in the 'title' field (you can
use the backspace key if you make a mistake)

press the ENTER key

169

press the letter 'g' (for 'go to first record') (you should see
one of the records you have created)

press the letter r twice

press the letter x

select 'Exit' with the arrow key and press Enter

press ESC twice

(To clean out what you have done, delete all files in the direc
tory and sub-directory which you created; the directory will be
apparent from the name you gave it, and it has a sub-directory
called 'Data' which will need to be emptied and removed.)

APPENDIX U
TWO WAYS OF SEARCHING FOR A SET OF RECORDS AND PRINTING OUT
 You can search through for a whole set of records (this only
works on R records), outside the database system. For instance,
if you wanted to print out all the records containing a certain
date or word or combination of these, without having to look at
each and mark it, you could do this.

In order to do this, use your word-processor to create a small
file with your query in. This query must conform to the various
terms used in the database system. For instance, you might put
in a query:

'P=Mills' and 'M=photographs' and 'D=1922'

which would find all the photographs taken by Mills in 1922.

Or you could put in:

'M=photographs' and 'shield'

When you would have all records of photographs in which the word
'shield' was used.

Or you could put in:

'shield' or 'spear'

When you would get all the records with either the words
'shield' or 'spear'.

170

 The words used here must be the exact, 'suffix-stripped' terms
in the index. If you are not sure about whether a word is
suffix-stripped or appears in the index, it is easy to find out.
When in muscat, go 'c-q'. This takes you into the 'q' or query
system. Now type the letter i followed by the word you are
interested in. You will be taken to the nearest equivalent. For
instance, type

i boy

and you will receive the reply 'boi'. You can look through the
list by pressing the carriage return. When you want to leave the
'q' system, type 'stop' and you will return to muscat.

Once you have created a little file with your query in, which
must have the extension .txt, you can use it. Supposing you
wanted to search for all records of Mills photographs in 1922,
as above, and you called the file 'Mills.txt', you would then
go, in Muscat:

c-getrecs

You will then be prompted for the query, to which you reply
'Mills', as follows:

query=Mills

You will then be asked for a file to which the answer can be
put, to which you could reply with a file name, for instance
Mills2.

The search will then be done and any records found will be put
in Mills2.mus. In order to see the results, this needs to be
turned into a text file, by going:

c-print mills2 to mills3

There will now be a text file, mills3.txt, which you can print
out above, either with a word-processor, or by using the MSDOS
'print' command.

 A variant of that above, is to follow the method for finding
and printing records using 'q', which is explained in the Muscat
Manual, 3rd edn, p.156. Specifically, you would input a Boolean
or free text query, then use 'mto' (output the matching
documents to a file), and print out the results.

APPENDIX V

171

THE CAMBRIDGE DATABASE SYSTEM INTERACTIVE (CDSi).
 This appendix describes a stand-alone, screen-driven
version of the system which will allow you to set up your own
database specifications and enter data. If you would like to see
quickly how this works, follow the instructions in Appendix T.

 In carrying out the suggestions below, please use the arrow
keys to go up and down lists of choices (menus), and the 'Enter'
and 'Escape' keys, as instructed, to make choices. Whenever you
need relevant help, press the F1 function key.

GOING INTO THE DATABASE
 Set up a directory off the root of your computer, called
'Data', or some other name. (You may find that one has been set
up for you already.) Go into that new directory and type the
letters cdsi. (You may have a batch file already to do this, so
try typing the two leters db in case).

 You will find a screen with 'Choose a Database or Esc. to
Quit', and 'F10 to change defaults' at the bottom. Press the F10
function key and you will be able to change the default settings
for all your databases. Press the F1 key (Help) for an explana
tion of what each setting means. You can leave these settings
for the present, altering them later if necessary.

 Return to the previous menu by pressing 'Esc'.

CREATING A STRUCTURE
 If there are no current databases already set up, or you
want to set up a new one, select "New" by pressing the Enter key
when "New" is highlighted. (Throughout, you can move around the
screen using the arrow keys on your keyboard). If you have
already created other specifications for other databases, one of
these, possibly with modifications, may be suitable for your new
database. In that case, select the name of that specification.

 It is possible at any time to revise a specification if it
is found to be inadequate.
 You should then give your new database a name. We shall be
using the example of a database of video cassettes, so you could
use the name 'video'.

 You will then be presented with a screen allowing you to
define the indexing and screen printing structure for your
database. These are known as 'specifications' and set up the
ways in which records are divided into fields, how each field is
to be indexed, and how each field is to be printed out on the

172

screen.

An example You may like to try out setting up options using the
following example, which would be the sort of scheme one might
have for a database containing video-tapes.

Code Select Name Indexing Display Cap Field

*c yes title B 0,P,L,N Cap
*d yes date D 2,T,C,I
*e yes area S 2,T,C,I
*k yes keywords F 2,T,C,I
*l yes country S 2,T,C,I
*q yes length - 2,T,C,I
*t yes series S 2,T,C,I
*u yes content F 2,T,C,I
*w yes reference S 2,T,C,I

Code The code (for example *c) is automatically set; you do not
need to alter this. It indicates to the computer that a new
field is starting. There are 26 codes or fields available. Since
the record is printed on the screen in code order, it is
sensible to start with material which you will want to have at
the top of the screen page.

Select You can explicitly select a field by pressing the 'Enter'
key when the cursor is in this column. To de-select it, press
'Enter' again. If you give a field a name, it will automatically
be selected.

Name Give each field that you want to use a name, for example
you might use words such as author, title, date. To type in the
name, select the field by pressing Enter and then type in the
name. You can use the backspace, arrow and delete keys to alter
this if you want. You can come back and change this at any time.

 Once you are satisfied with the name, press Enter or Escape
and you will see the name on the screen. Move on to the next
column with the arrow keys.

Indexing Select the options by typing Enter and you will be
given the following options, each of which can be altered by
pressing Enter on it (a toggle switch between yes and no).

Structured Mode: for 'and/or' queries. This is useful if the
field is likely to hold a single word or a few words at the most
(for example person, place, date, short title). It can be used

173

on its own or combined with the 'free text' form of indexing.

 This field must not contain more than a maximum of about
twenty words. If you are putting a record in through the
on-screen editor, then you will be prohibited from putting in
records of over that length.

Free Text Mode: useful for the above, but also for a string of
words, for instance a short description consisting of one or a
few sentences, every word in which will be indexed (except for
words such as 'and, the, of').

 It is not advisable to index fields which contain more than a
paragraph of text. The upper limit is set by the fact that a
whole record cannot contain more than about 500 indexing terms.
If you try to index too many words, an error will be reported
and you will need to shorten the record. (Further advice on this
is contained in the Manual, Appendix D, where it is shown that
the number of words you can index is variable, depending on the
'blocksize').

 You will learn by experience when to use the two modes of
indexing and when to combine them. As a preliminary rule, it is
worth using 'structured' alone for dates, names, places and
cross-references to numbers (for instance archival storage). If
you are describing something in a line or few lines of text,
then use the free text mode on its own. It is worth indexing
short titles (for instance a one-line title of a book), in both
ways.

Date mode: for dealing with dates, days, months and years and
spans of dates.

Making your choice.

You can go down this list selecting your choice for each field.
When you have made each selection, type Esc and you will see
what you have chosen (S=Structured, F=Free Text, B=Both D=Date).
You can return and alter these while this screen is still
present by moving up and down with the arrows. You can also
revise the specification later if it is not satisfactory.

Display options
 Again use the arrows to reach a choice, and Enter to make a
selection.

Separation: in other words, line separation between fields. You
can select 0,1 or 2 with the Enter key. Normally, 2 looks best,
except with the 'Caption' field, where 0 looks best.

174

Plain/Title mode (a toggle). The name or title of the field is
printed first if Title is selected. It is normally best to use
the 'Title' mode for short fields, for instance names, places
etc., which are also the ones you will search by structured
queries. The 'caption' field, and the longer text fields,
indexed by 'free text' mode alone, or not indexed, look better
in 'Plain' mode.
 Line/Comma separation of repeated fields; each repeated field
either being put on a new line, or separated by a comma. In
general, short fields (for instance names or places), look best
separated by a comma. Longer text fields look better separated
by a line.

Indent/No Indent - indent or do not indent the text from the
left. Short fields look best indented; longer text fields are
better not indented.

The defaults, as set on the screen, are usually the best
choice. If you try to change the caption field values the
program complains, but will let you do so on confirmation.

Cap Field allows you to decide which the caption field will be.
Only one field can be set in this way. One of the ways of re
trieving your data is by 'caption mode', which lists the records
by their caption fields (one of which can be chosen to take you
to your record). It is a quick way of looking through a set of
answers. Choose a field in which you have a line or so (for
example, the title of a book or short description, which will
usefully appear in a list). It is wise to leave the default
values set for this field, but you can change them if necessary.

 You should set up the fields as you wish. If you want a field
to be used, but do not want the words in it to be indexed, give
it a name but set all the indexing options to 'No'. One or two
fields of this type for your notes, or for long texts which you
do not want indexed, may be useful.

A record corresponding to the indexing format which you have now
set up would look as follows:

*c Peoples of the Desert
*d 1961
*e Africa
*k war
*l Kenya
*q 50 mins
*t Tribal Worlds

175

*u A film about the nomadic tribesmen on the border of Kenya and
Uganda
*z 204.6
#

 Once you have set up your desired format for the particular
database and checked it is as you want it, type 'Esc'. The var
ious indexing and printing programs will then be automatically
set up for you in your database directory.

 If you want to change a specification after you have made it,
select the 'Change specification' option on the menu. Select the
database which you want to change and edit it. (When you have
already set up other databases with their specifications, you
can copy the specification of one of them as a model and modify
it for your present use.)
 In order to make the best use of the database system, it is
important to have thought out how you would like the indexing
and field structure to be. Try it out on one or two records, and
revise it, before entering too much data. Otherwise you may have
to re-enter or modify your data, which is always time-consuming
work.

CREATING A DATABASE
 After the indexing format has been created, you can create a
database. When you enter the selection and choose your new data
base name you will see various options.

 If you select 'create database', an empty database of 100k
will be created. If you want to extend this later, you can do
so; or the system will automatically increase the size if you
run out of space while putting in new records.

 If you want to start with an empty database of another size,
larger or smaller, select 'Change Size' and specify the number
of kilobytes (k) that you would like. Then select 'create
database'. It is probably best to start with the default
database size (100k), though later you may want to use slightly
smaller or larger databases.

 Once created you can select the new database you have just
set up and you will be offered various options.

ENTERING DATA
 There are three ways of entering data. The simplest is to
select the 'Edit record source files' option system and follow
the instructions. This will also prevent errors in coding.

176

 When you select 'Edit record source files' you will find that
the screen is split horizontally with a "window" above showing
the contents of the current record. The "window" below is where
the field editing takes place.

 The top 'header' gives the database name and the current
record number (i.e.. sequential number for the edit, not the
database record number which is added automatically when the
record is added to the database); the mid-line 'header' shows
the characteristics of the current field. At the bottom of the
screen are a list of the function keys and what they can do.

 Using the appropriate function keys you can enter data into
a field. You can move to the next field with F5, and to the next
record with F3. You can move back to the previous field with
shift/F5 and to the previous record with shift/F3. You can
repeat a field with F6, and delete a field with F7. (You will be
able to delete a record with F , later; and go to the end/start
of the file with F . You will also be able to set 'constants',
that is fields which are automatically added to each subsequent
record, until they are cancelled.) When you have finished
editing a set of records, type 'Esc' and you will be asked if
you have finished. Type the letter 'Y' for yes, and the file
will be stored away with the name you have given it. You can
make alterations, or add further records later by selecting the
file name again.

 Remember never to use a backslash (\) in your text within
the editor, this is a reserved character and will corrupt the
record in various ways.

ADDING RECORDS TO THE DATABASE
 Select 'Add Records to Database'. You will see the file name
or names of files ready to be added. Select the one you want
added with the Enter key and it will be added. If the file is
fairly long and a lot of indexing is being done, this may take
some time. A complex indexed file is set up which will make
retrieval very fast and powerful.

 Once the file has been added to the database, the name will
disappear from the screen (though the file itself is not de
stroyed and can be recovered, as explained later).

ENTERING AND USING THE DATABASE
 Select 'Use Database' and wait while the system is loaded.
You will then be presented with options. These are explained in
the various 'help' options on the screen, and in chapter four of

177

the Manual.

178

 PART C: TUTORIALS
TUTORIAL ONE. PREPARING RECORDS AND LOADING THEM INTO A DATABASE
 A way of simply adding records to a database is given in the
CDS Interactive Manual. The following account is for those who
want to progress beyond that to deal with more complex data.

EXERCISE 1
Preparing, checking and numbering a test record.
 In order to see how the system works, let us go through
all the stages with a simple record. Since you will begin to
create a good many files during the processes explained in this
Tutorial, it is worth remembering for later that you can create
'temporary' files in cds 2000. These are automatically deleted
when you leave the 'Muscat' program, hence saving the need to
clean up after you. These temporary files start with an ! mark.
For instance, you could use !a !b and so on. In the following
exercises, however, permanent file names have been suggested.
This is because the temporary files are kept in 'core', that is
in RAM. Unless your files are fairly small, or you have plenty
of free RAM, you will run out of space and get a message saying
'space exhausted....'. You should use the permanent names in
the exercises and then clean up after you by deleting the
unwanted files you have created.

Typing in the record.
 Using your usual line editor or word-processing
package, prepare to type in a few lines. Note that these must
not include the 'control' characters (automatic line endings
etc.) which are produced by a number of word processing
packages. To avoid including these illegal characters, if you
are using a word-processing package and there is a choice in the
package at the start, use the 'non-document' mode. If the
choice comes at the end, then choose the 'non-formatted'
option when you file or archive the document.

 In order to go into the database, the file needs to be
stored in the 'cds' sub-directory of the Muscat directory. Go
into that sub-directory. It also needs to have the extension
'.txt'. Think of a name for your small test file and start
to create a file called 'test.txt'.

 Now type in a short record consisting of five fields as
follows:
*kd 19.10.1987

179

*kp Marx/ Karl
*kl Cambridge
*u a visit to Cambridge by a north London witchcraft coven in
October 1987
*t This is a detailed account in the local paper of the visit
of
the famous north London witchcraft coven (this could go on for
up to fifteen pages) #

 This is enough for a test. It contains a date, name, and
place keyword fields, and a shorter and longer text. The
record ends with a hash sign. The fact that a field is being
declared is indicated by a star; the type of field is
indicated by the letters after the star. Now save this file
(in a non-formatted form, as stated above) and return to the
'cds' directory, where you should find this small file. Check
that it is there and in the form you typed it in, without any
control characters.

Checking the record is suitable for input.
 In order for the record to go into the database, it has
not only to be 'clean', but also 'built' into a form that
the database will accept. In order to check its accuracy and
prepare it for inclusion, type the following (make sure you
are in the \muscat\cds directory before doing this):

muscat cds

This will take you into the muscat system, giving you a
prompt with the word muscat. (Whenever you want to leave the
muscat system, type the word 'stop'.)

 Now build and check the record by typing:

c-build test to test

(or whatever word you have chosen to call your file). The
full form of this would be:

c-build test.txt to test.mus

The computer assumes the extensions, so it is not necessary
to type them in. If the program cannot find the named file, it
will complain. Otherwise you should get a report telling you
that a record has been built.

 If there are any errors in the record, you will be told,
with some guidance as to which line the error was in and what
kind of error it is. (Some help with error checking and

180

line-finding is given in appendix B.)

 When you have done this exercise, it would be worth using
the same record but modifying it slightly (for instance by
typing *kz instead of *kp, which the program will not
recognise), in order to see the kind of error message you will
get. These errors have to be corrected before the record will
build and can be entered into the database.

Numbering the record.
 Once a record is clean and in a built form, it is ready for
numbering. All records have to be numbered before
inclusion in the database. You do this by typing:

 c-number test to test1

You will then be asked for a letter code. Type a capital R
in reply (standing for Record). You will then be asked for a
number to start at, which would mean that a whole file
could be automatically numbered. Type 1000 in reply to this
request. Your record will then be given the number R.1000.

EXERCISE 2
Setting up a database and adding the record.
 Let us assume that you do not have a database as yet. (If
you do have a database, or someone else has created one, be
careful as you could over-write it. Make sure by looking to see
if there is a file called db.da in the \muscat\cds directory.
If there is, it is a database file and should be renamed
temporarily so that it is not over-written or destroyed.)

 To create an empty database go into the '\muscat\cds'
directory and into muscat (as explained in exercise 1) and type:

c-create

You will be asked for the size of the database you want
to create, in kilobytes (1000 bytes), so respond by typing
200. You will be told when the database is ready. You will see
that it already contains some records and is partly full
(a percentage is given); these records are the introductory
menu and help pages which you will need and which are
automatically put in. You can alter them if they are
inappropriate, as explained in a later exercise.

 Now add the test record you have created in exercise 1

181

by
typing:

 c-add test1 (or whatever name you chose)

This record will be added to the database and you will be given
a report on how many index terms have been extracted, how full
the database is, what version of the database is now active etc.
The database is now ready for searching.

EXERCISE 3
Searching the database to see your sample record.
 The ways to search the database are described in a
separate part of the manual, which you may want to read now. But
if you would like to read the full manual later, and just want
to see the result of putting in your sample record, type the
following:

 muscat cds

At which you should get a 'Muscat' prompt. Then type:

 c-dbsys
 (If the machine complains that there is no videodisc, then try
typing c-dbsys opts 0).

Each of these routes should take you into a screen which
welcomes you to the system and gives you a menu of choices.

 On the keyboard, type the letter 'f' (thus selecting
'free text query'). You will then be asked to put in a word or
words.
Type the word 'ghost' (if you make a mistake, just use
the backwards pointing arrow at the top of the keyboard, which
will delete the letters you have typed, or try again after a
carriage return). Then type a carriage return. Then type the
letter 'g'(for 'Go to first item') and your sample record
should come up on the screen.

 Alternatively, type 'R', which will take you back to the
initial menu and type the letter 's' (for structured query).
Then type 'l' (for locality), and a carriage return. A
list, simply containing the word 'Cambridge' should appear.
Type a carriage return to select this and Cambridge will
then appear on the right-hand side of the screen. The query
has been set up. Type the letter 'r' twice to return to the

182

screen which has 'Go to first item' on it and type 'g'. You
will then be taken to your sample record again.

 To leave the database, type the letter 'r' until you come
to a screen which says EXit at the bottom, then type the letter
x.
Then type 'stop' to leave muscat.

 Now try creating and numbering two or three more
records, using the same fields, but putting in some data of
your own choice. You will then see how the list of
possible places, persons etc. increase in size. You will also
notice that the *t field is not indexed. Remember to end each
record with a hash sign, otherwise the records will be treated
as one record.

 If at any time you want to get rid of your trial database,
you can delete it like a normal file by typing:

 del db.da

(specifying the cds directory of course, if you are not in that
directory).

EXERCISE 4
Preparing a more complex videodisc record.
 The simple example above, with some additional fields,
will serve for many text database purposes. But if the system is
being used to link with optical media (videodisc etc.), it
has some extra features, which can be illustrated through an
exercise.

 Using your word-processor or line editor as before, create
a file (or edit your \cds\test.txt file); add a new record
as follows:

*i B.47000 *kd 14.12.1983
*kl Oxford
*k sport
*u the Oxford rugby football team
#

This record has a *i field, that is an index field, which
cross-refers to a still image (denoted by B.) at frame 47000 of
the videodisc. Save this file in the \muscat\cds directory, as
before, then return to that directory and go into muscat by
typing:

183

 muscat cds

Then check the record, as before, with c-build. When it is
clean, you are ready to proceed.

 The *i number needs to be converted by the computer so that
when it is retrieved it will be displayed with a 'Show' box
at the bottom of the screen which will take you to the
videodisc frame. This is done in one of the programs within a
command called 'batchadd'. So type:

 c-batchadd

You will then receive prompts for filename (give the test
file name), and, as before, for record type (type 'R') and the
number to start at (type 1100). The rest is done automatically,
and you are told of the progress of the program.

 The new record will now be in the database. Now type:

 c-dbsys

which will give you a simulation of what you would see.

 Once you are at the introductory screen, select 'f', then
type 'football' and carriage return. Then type 'g', for 'Go to
first item'. The record should now appear with 'Show' at the
bottom of the screen.

 Type 's' and frame 47000 will be displayed (which is
unlikely, of course, to be an Oxford football match), or a
message saying frame 47000 is on show will appear, if there
is no videodisc player attached.

 To leave the database do as before, i.e. keep typing 'r'
until you are at the introductory page and then type 'x'. And
type 'stop' to leave Muscat.

EXERCISE 5
Preparing a text record.
 For many applications, users will be content with
texts appearing in the *t field of a record. This is perfectly
adequate where the texts are short and there is no desire to
read through the set of texts sequentially, as if they were a
book.

184

 But if the text is the most important part of the record,
for instance if you are using the database as a way of holding
and retrieving from a number of book-length texts which you
want to read through sequentially, as well as finding as a
specific record, some extra processing needs to be done. Let
us try a small dummy sample.

 As before, use an editor to create a file called
something like book.txt. Then type the following (for now the
fields should be typed in twice; there are automatic ways to do
repeated fields, by setting constants, as explained in the
manual, if you need to do longer texts);

*c Pride and Prejudice
*m book
*prod *d 1798
*kp Bennet/ Mrs
*prod *p Austen/ Jane
*u marriage and fortune
*t It is a truth universally acknowledged, that a single man
in possession of a good fortune must be in want of a wife. #

*c Pride and Prejudice
*m book
*prod *d 1798
*kp Bennet/ Mrs
*prod *p Austen/ Jane
*u marriage strategies of neighbours
*t However little known the feelings or views of such a man
may be on his first entering a neighbourhood, this truth is so
well fixed in the minds of the surrounding families, that
he is considered as the rightful property of some one or other
of their daughters."
#

 You now need to split this into the two R-record and T-record
files, the one providing the index to the other. You do this as
follows. Go into the \muscat\cds directory and then into muscat.

c-build book to book
c-number book to book1 (this numbers the file)

At this point, you are given a request:

lettercode = to which you reply T ('T' in upper case).
startingat = to which you put a number at which the
 numbering of the records must start; this
 must not overlap with any other R or T
 numbers already used. Since the introductory
 have T records, you should start at 500.

185

When this is completed, you are in a position to split the file
by going:

c-bksplit book1
You will then be asked for names for the two files which are
created, to which you can answer as below:

tor = book1r (tor, i.e. to record file)
tot = book1t (tot, i.e. to text file)

You now have the two separated and numbered files. These still
need some global editing before they are ready to go into the
database.

Editing the new record file (book1r)
 You first turn this back from a built file into a
text file by going:

c-list book1r to book1.tor

Then you use whatever editor you have and do a global edit of
book1.tor, as follows:
globally exchange *i R to *store {|T.!|} *i R

The effect of this is to automatically put in the cross-refer
ences to the related Text records.

You should also globally exchange *t to *g1. This will put in a
print command to create a space between each paragraph of text.

Editing the text record (book1t).
 Again you need first to convert this to a text file:

c-list book1t to book1.tot

This needs then to have the cross-references to previous and
next records put in. Book1.tot is globally edited as follows:

globally exchange *i T to *store {|0 T.!-1 T.!+1|} *i T

This will automatically set the links between all the paragraphs
of a book or diary, however many there are.

 It is necessary to slightly modify this for the first and
last records, which will apply to the example you have typed in

186

above. The first paragraph will not have a previous paragraph
and hence should be edited to:

*store {|0 0 T.!+1|}

The last paragraph should be edited to:

*store {|0 T.!-1 0|}

The file is then ready for entering into the database.
 Entering the files into the database.
 The procedure for entering files into the database is ex
plained in detail elsewhere. Here we may note two things. First
ly, that in order to enter these into the database,they need to
have the extension .txt. So the two files might be named or
renamed, for instance,

bookr.txt (the record file)
bookt.txt (the text file)

Secondly, these have now all been numbered and cleaned up in
various ways. They do not, therefore, go in using the procedures
in the normal BATCHADD command. Rather they are added with a
simpler command.

They need first to be built from the text files, thus for in
stance, having entered muscat cds, type:

c-build bookr to bookr

Then this file is added thus:

c-add bookr

Likewise with the bookt.txt file.

When you have a clean file, to see the effect in the database
do the following.

 Go into the database in one of the ways which you have
already used in previous exercises.

 Type 's' for structured and 's' again; then 'p' for
person and 'Enter' and select 'Austen' in the list of persons
by pressing the carriage return on the box against that name.
Type 'r' until you get back to the selection menu with 'Go to
first item'. and then type the letter 'g'. You will then have
the record associated with these texts. Type 's' for show and

187

you will see the text with the caption you have put in.

 If you want to see the next paragraph, type 'n' for next
('p' for previous will then appear to take you back). As
you can imagine, with a longer text, you would be able to
go to any paragraph, if it contains appropriate index terms,
and then read forwards or backwards. When you leave the text in
this mode, you will always return to the record by which you
entered.

EXERCISE 6
Altering the introductory screens.
 The database contains an unlimited number of data records,
but also a user-interface or front end which you can modify to
your own use. The material in the front end is contained in a
set of records which are in a text file in the
\muscat\macros\cds directory called 'intro.txt'.
 This file is automatically added when you set up a
new database using c-create, as we have seen. It can be
altered and then re-added at any time, the new version
replacing the old one without disturbing the database. Thus
if you want to add new choices, new help pages, new
tutorials or whatever, this can be done at any time.

 At present, intro.txt contains a number of A and T
records which give you choices. You will find the text of
intro.txt is given in Appendix K above, which is worth looking
at in conjunction with this exercise.

 Let us make a small modification to show how this can be
done. Using your editor, get the file
\muscat\macros\cds\intro.txt. Go to the first record, which
starts *i A.1 and after the first line:

*g1 Welcome to the Cambridge Database System

add a line, for instance as follows...

*g1 Adapted for use by (add your name here).

Now save the file, go into muscat, build the file and add
the file (as explained in previous exercises) and go into
the database. You should now see your name on the introductory
page. Obviously, if you want to change it back, you do the
same thing in reverse, deleting that line and re-building and
adding the file intro.txt. (An alternative way would be just
to copy or set up a file with the one record *i A.1 in it and

188

add this.)

TUTORIAL TWO
HOW TO FIND DATA IN A DATABASE
INTRODUCTION
 The following exercises will take you through all the types
of retrieval that are possible with the retrieval system. If you
do not have a videodisc attached, you will only get a simulation
of the pictures or sound.

 The examples are taken from a very small trial database
which has automatically been loaded into your computer with the
software system. This is held in two files called DAREC.DA and
DATERM.DA in your \muscat\cds directory, comprising about 6Ok in
all. There are the introductory 'menu' and help pages and 19
sample records of various kinds in this database. These records
are printed out in full in Appendix J. You may like to use that
Appendix later to work out some further queries based on the
records. Clearly this is a very small set of records. You will
have to imagine, before you have built your own database, how
the system would work with far larger sets of records.

 EXERCISE 1
Making choices.
 This will take you through the various ways of making queries
with the computer, showing each page as it appears on the
screen, and then explaining what happens when you select a
choice.

 Go into the \muscat\cds directory and type:

c-disc

 Look first at the screen, and note the 'choice' boxes. These
choice boxes will be shown in this written description by using
a * symbol. Whenever you see a *, imagine that it is a box on
the screen.

 Now look at the screen again, and you will see the following
page appear:

189

(computer screen)

Welcome to the Cambridge Database System

Press 'H' for help: *
Introductory text: *
Tutorials: *
Contents: *
Free text query: *
Structured query: *
Both free text with structured: *
__

 Now press the 'H' (or Help) key on the computer and you will
see a detailed description of how to make selections. Read that
description carefully. In summary, the description explains
that:

Each screen you see contains several little boxes like this: * *
one of which will be flashing, or highlighted in some other way.
You can change which box is flashing by pressing the four
'arrow' keys. If you press the 'Enter' key (the large key which
is located where a carriage return key on a typewriter would be)
you will select the flashing box.

A box is often accompanied with a word beginning with a letter
in a special colour or shade, Like This. Pressing the letter key
selects the
box, for instance 'F' will select 'Free text query'.
 As suggested on the page you see on the screen, if you press
'R' for Return, you will be taken back to the initial page. This
is important to remember. Whenever you want to 'return' to a
previous higher level, press 'R'. If you continue pressing 'R'
you will always return to this initial page. In other words,
choosing boxes, or highlighted letters will take you downwards
and sideways through the system, choosing 'R' will always take
you back up.

 Be careful, however, not to press 'R' or any other letter for
too long or too heavily, as the key is likely to 'repeat' and
take you further than you intended to go.

 Now try out the choice boxes and selecting by a single letter
(which can be a capital or non-capital, in other words 'T' or
't'). For instance, have a look at the 'Contents' option. Select
this by pressing 'c' on the keyboard, and you will then have a

190

list of choices with boxes. Choose one of these by moving to it
with the keyboard arrows and pressing the 'Enter' (carriage
return key). Then return back to the original page by typing
'R', which will take you up one level, and then typing 'R'
again, which will take you to the introductory page.

 You are now in a position to make choices, going up and down
the levels of the system.

EXERCISE 2
Free text queries.
 Let us now look at an example of what we call the 'base'
page. Try pressing 'F' for free text query, and the following
will appear on the screen:

__
_
(computer screen)

* Free text query
* Input Marked item
* Alter the retrieval style
* Help
* Return
__
_

 By selecting 'Free text query', either by pressing 'f' or
selecting the box, you will be able to enter a free text query.
You may put in up to a line or more of words, but it is best not
to put in too many; three or four words is often ideal. They can
be in any tense, plural or singular, capital letters or ordinary
letters etc. You can put them in any order, with complete free
dom.

 For instance, you could type 'Show me all the hats made with
yellow orchid stems'. But since the really important words are
'yellow' 'hats' 'orchid' 'stems', it would be sensible just to
put in these four words, thus saving typing and saving the com
puter from looking for 'show' 'all' 'made' (unless these are
indeed important). When you have typed in a query, it is fed in
by pressing the 'Enter' (carriage return) key.

 Now press 'f' for free text query and you will see the
following prompt:
 Free text query>

191

 Try typing in a short free text query, for instance the
following : hats yellow orchid stems.

 This will appear on the top of the screen, after 'Free text
query> '. If you make a mistake in the typing, it can be
corrected as follows. Using the 'backspace' key on the keyboard
(which often has an arrow pointing to the left, and is always
situated just above the 'Enter' (carriage return key) you can
delete letters back to the point where you want to re-type them.

You will now have a screen as follows:
__
_
(computer screen)

Free text query > hats yellow orchid stems
* new Free text query
* Inspect the free text query
* Go to first item * New item
* Input Marked items
* Alter the retrieval style
* Help
* Return
__
_

 Type an 'Enter' and now try typing the letter 'i' for
'Inspect the free text query' and the following screen will
appear:
__
_
(computer screen)

Del: * freq 1 hat
Del: * freq 1 yellow
Del: * freq 1 orchid
Del: * freq 1 stem

--
-
 This shows the words you are looking for, and shows how often
(freq stands for frequency) they appear in all of the indexed
material in the database. In other words, 1 record is indexed by
the word yellow etc.
 You may want to delete a record from a particular query, for
instance if it appears so many thousands of times that it is
unlikely to produce very interesting answers. To delete a term
from the query, select the appropriate delete (Del:) box, using
the upward/downward arrows on the keyboard to reach the box and
then pressing the 'Enter' key.

192

 Try now to delete the terms 'yellow' and 'hat', then return
to the previous screen. Select 'new Free text query' and put in
the query again, namely 'hat yellow orchid stem'.

 You now have a query set up and wish to look at the best
answer. Do this by pressing the letter 'g' for 'Go to first
item'.

 Since this is a tiny database, after a second or less, while
the computer finds the best answers to the query, the first
answer will be shown on the screen as follows:
__
_
(computer screen)

colour photograph of Naga objects from various sources: Hat of
cane-work with two [missing] black feathers and a large
boar's tusk. A chaplet of long pig's bristles encircles the
hat interspersed with sharp bristles dyed red. An ornament of
plaited yellow cane or orchid-stem is in front attached round
the 'chaplet' cane foundation. artefact. Phom. Size:12cm
(height of cap)
 Production: Phom;
 Production:
 (4:218)
 Collection: J.H.Hutton
 Acquisition: gift; Pitt Rivers Museum; 1919;
 (Hutton I.183)
 (description derived from original source material unless
 square brackets or otherwise stated)

Help * Return * Show * Terms * Mark *
__

 This is a fairly full record, describing an artefact in a
museum. The different parts of the record describe the following
things:

colour photographs... - this is the title, describing what
the source or medium is, it might be a short book title,
description of set of photographs, a film, a book etc.

Hat of cane-work... - this is in a different colour/tone, to
indicate that it is the 'caption' or short description of an
artefact, photograph, piece of text or film.

Production: Phom. This is the name of the tribe (Phom) who pro
duced the hat.

193

Size: 12cm. - gives the (longest) measurement; in this case we
are told that this is the height of the cap.
Production: (4:218) - this is a production reference number (in
this case the reference number for the photograph of the
artefact)

Collection: J.H.Hutton - the collector's name

Acquisition: gift; Pitt Rivers Museum, Oxford; 1919; (Hutton
I.183) -
this gives the mode of acquisition (gift), who acquired it, the
date of acquisition (1919), and the museum reference number.

There is then a comment in brackets to explain how the record
was made.

At the bottom of the screen are various choices, which will be
explained shortly.

 This is a fairly complex record; obviously films and field
photographs and paragraphs of texts will have a simpler descrip
tion.

 We now have a record describing a particular artefact in a
museum. Now try pressing 's' or the 'Show' box at the bottom of
the screen, and the following will appear, either in reality or
in a simulation.
__
_
(computer/television screen)

Frame 642 (black and white) (T)ext on/off

 [picture of hat - if videodisc attached]

Help * Return * Mark * Text on/off *
__
_

 If you press 't' once it will turn off all the text on the
screen (which is useful if a picture is being shown). Press 't'
again to turn the line on again. Try this out.

 (A choice 'Next' will appear on the bottom line if there are
two or more images associated with a record. For instance,
'Next' will appear if there are two photographs of the object, a
front view and side view.)

194

 Now return to the 'base page' by typing the letter r, that
is the page which allows you to make a free text query and type:

new free text query> fish poison daughter burial Earls Colne
shaman

 Now ' Go to the first item' and you will be shown a piece
from a burial register for Earls Colne. You have been shown this
first because it has four of the words, 'daughter burial Earls
Colne' in it. Then type the letter i (or select the 'new Item'
box) and you will be taken to another burial. Keep selecting i
(new item) until you come to a record about a film. This has two
of the words you asked for, fish poison, in it and hence has
been shown next. Go back to the previous record (of a burial) by
pressing p (or the 'Prev' box at the bottom of the screen), and
then press 'n' for next, and you will be back with the film
record. Displayed at the bottom of it will be all the available
choices, as follows:

__
_
(computer screen)

16mm colour film taken by Ursula Graham Bower between 194O and
1944: fish poisoning expedition at river near Hangrum. films.
films. Zemi.
Production: Ursula Graham Bower; 11.1940
Acquisition: Pitt Rivers Museum Archive, Oxford.
 * long shots of procession walking to river.
 * close-up of people carrying vegetation.
 * beating poison into river.
 * man beating fibre.
 * little boys searching for fish. * little boys
searching for fish.
 * little boys searching for fish.
 * men beating fibre on rocks.
 * men scrambling up river looking for fish.
 * crowd of men swimming down river looking for fish.
(black and white photographs taken by Ursula Graham Bower * *)

Help* Return* Show* First* Prev* Next* new Item* Terms* Mark*

__
__

 It is worth reminding ourselves first of what the record
itself describes:

16mm colour film.... - this describes the source of the image
we will be looking at.

195

fish poisoning expedition... - this is the short description,
giving an over-all caption for the film sequence

Zemi - this is the ethnic group, the Zemi Nagas.

Production: Ursula Graham Bower... This gives the name of the
producer (film-maker) and the date (November 194O) when the film
was shot.

 In this case there is a general sequence on fishing , split
into ten separate 'shots', which may be stills taken from moving
film, or a sequence of moving film. Each of these has a
sub-caption.

 If a list of boxes appears like this, they can be selected in
the usual way by moving to the box you want to see and pressing
on it. This allows you to move through photograph sets, for
instance.

 Try looking at one of the moving sequences by selecting one
of the boxes.

 If you have chosen a set of 'stills' from a film, there will
be a 'Next' box. Press 'n' to see the next still.

 If you have chosen some moving film, there will be a 'show'
box at the bottom of the screen and you will now see the first
frame of a sequence of moving film, or a message indicating that
this is a simulation. Press 'S' or the 'Show' box, and you will
be shown the film in motion. If it ends and you want to see it
again, select 'g' for Go from start. Type 't' at any time to
turn the text overlaying the picture on and off.

 Press 'S' again, for Stop while the film is running and a set
of controls will appear at the bottom of the screen. These do
the following:

Go : sets the film playing

Backwards/Forwards: this is a 'toggle' which plays the film
through backwards or forwards
Speed 1/2 : another toggle, which sets the speed to slow motion
(1) or normal speed (2), if you press the numbers 1 or 2.

Prev: takes you one frame back

Next: takes you one frame forward

Mark/unMark: marks the still frames (and unMarks them)

196

Text on/off: another toggle to turn off the overlaying text.

Try each of these controls in turn if you have the computer
attached to a videodisc, or imagine how it would look if you do
not. Then return to the record, that is the description of the
film sequence, by going 'r' twice.

 You are now in a record which is part-way through a set of
records which have been found in answer to your query. Now try
the 'f' (first), 'p'(previous) 'n' (next) and 'i' (new Item)
choices a few times to get the idea of how you can move
backwards and forwards through the records. Basically, 'first'
takes you to the first record you saw, 'previous' takes you to
the record you have just seen, 'next' takes you to the next
record (which you have already seen), and 'new item' will take
you to the first item which you have not already seen. If there
are no more 'new items', this choice will disappear from the
screen.

 Using these controls, find the film record again. You will
notice that there are two boxes at the bottom within a bracket.
These are cross-references to still photographs which were taken
of the same fish poisoning. Select one of these boxes and you
will be taken to a (simulation of) the relevant photograph.
Press the letter r to return to the film record.

 Now find your way to the record which clearly describes a
fieldwork notebook entry about were-tigers and shamans. Here you
will see the same structure on the screen; the source, a short
caption, some keywords, the longer text, and some further
keyword fields. This is how a text record looks if it is put in
as an ordinary record.

 If, however, you have a very long text (such as a book or
long diary) which you want to be able to read through page by
page, as well as going to separate pages with specific searches,
then the text will be put into the computer in a different way,
as explained in exercise 5 of Tutorial 1. Here we will just show
you how such a record would appear, though you will not be able
to try this out unless you have the full Naga database.

 In answer to a query on 'leg tattooing of girls', for
instance, you might get the following screen:

__
(computer screen)

manuscript - Christoph von Furer-Haimendorf, Naga diary 3:
leg tattoos of girls. diaries.Shankok. Konyak. Wakching.

197

23.12.1936.
Production: Furer-Haimendorf; 28.11.1936-11.2.1937.
(translated from german by Dr Ruth Barnes)
Acquisition: School of Oriental and African Studies Library,
London

Help * Return * Show * new Item * Terms * Mark *
__

 This is a record which again contains different bits of
information. The medium or source is a manuscript diary; the
short caption describes the contents of a paragraph of the
diary; then follows a name (Shankok), ethnic group (Konyak), and
place (Wakching), as well as a date (23 December 1936), to which
the paragraph of text refers. The writer of the diary, and the
covering dates of that particular diary, are then given under
'Production'.

 You are given at the bottom of the screen the option to
select 's' for 'Show'. If you did this you would see that
instead of going to an image, you are taken to a paragraph of
text. In this case, this would look as follows:
__
_
(computer screen)

leg tattoos of girls. 23.12.1936. Wakching 23/12/1936

Again storm and rain were beating against the bungalow at night.
The morning was heavily overcast but occasionally the sun came
out. I talked to Shankok's sister who was coincidentally near
the bungalow, into letting me copy her tattoos and she proved to
be much less shy about it than I had expected. However Shankok
was there the entire time as well. He now wears with pride the
shell discs of the head-hunter over his ears and the boars'
tusks around his neck. The major part of the girls leg tattoos
is already done when they are about eight years old. (112)
Slightly later the same lines are again tattooed and at the time
of their marriage the tattoos are completed with lines across
the knees.

Help * Return * Prev * Next * Mark *
__
__

This is the textual record, a paragraph from a diary in this
case. It has the short caption in a different colour/tone at the
top, with the date and place of writing. The number, if any, in
brackets, indicates a new page in the original diary.

198

 In this case the entry is fairly short. When it continues for
more than one screen, a choice box 'On to next page' will appear
at the bottom of the screen. You could select 'O' for 'On to
next page' to see the rest of the text. If you did this, a new
box 'Back to previous page' will allow you to return to this
page, by pressing 'b' for 'Back to previous page'.

 Now that you are within a set of paragraphs, it is possible
to read through them by using the n (next) and p (previous)
letters or boxes at the bottom of the screen. It is thus
possible to read through the whole of a diary or set of letters
or book in this way, paragraph by paragraph.

 When you now return (type 'r') to the record from any page
of the text, you would see that you have returned to the record
through which you first entered the diary.

 In order to look at the next possibility, return to the
'base page' and type the following:

new free text query> colour of hair

Then 'Go to the first item' and you will be shown a diary entry
describing some physical anthropology. In the middle of the
record you will see a flashing box. Press the 'Enter' key and
you will be shown a simulation of a black and white photograph.

 This is the way cross-references, which also appear in ordi
nary records as boxes within brackets, are dealt with. When you
type 'r' for return after looking at the item cross-referred to,
you will be taken back to the record or page of text which con
tained the cross-reference.

 One other type of material is worth exploring briefly here.
This is sound material, that is music and speech. Try typing a
free text query with the words 'wax recording'. You will be
taken to an item which is clearly a sound recording. Select the
'Show' box at the bottom of the screen and you will then be
taken to a blank screen with another show box on it. This is
paused at the start of the sound. If you select 'Go from start',
you will hear the sound, or told that it is playing (in
simulation). If the sound is playing and you want to interrupt
it in the middle, press 'r' or select the return box.

 You have now completed exercise two and are in a position to
make free text queries.

EXERCISE 3
Structured and combined searching.

199

 In order to look at the other kind of searching, 'Structured
Queries', press 'r' until you return to the initial menu choice
and then select 's' for Structured query. You will then see a
screen as follows:
__
_ (computer screen)

Year *
Other date *
Person involved *
Locality name *
Ethnographic group *
Medium of recording *
Source of material *
Videodisc frames *

Help * Return *
__
_

 Whereas in 'Free text' searches, you could put in any words
that came to mind, in 'Structured' queries, you will select a
particular field, and then be presented with all the words by
which that field has been indexed.

 The fields which are indexed in this way, and the choices
they allow, are as follows.

'Year' - to select all the records within a year

'Other date' - to select the records by day or month

'Person involved' - to select the records by person's name

'Locality name' - to select the records by place names

'Ethnographic group' - to select the records by tribe or ethnic
groups

'Medium of recording' - to select the records by medium of re
cording (e.g. photograph, film, artefact).

'Source of material' - to select by museum, archive, library

Videodisc frames - to select a record describing a frame number.

 Let us first look at how you select by year. Select the
'Year' choice, and you will be taken to several ranges of years.

200

Choose the one you would like, and you will be taken to blocks
of years. Again press on the one you would like, and the year
will appear on the right hand part of the screen.

 If you would like the records for more than one year, select
those you would like, and they will appear in the form, for
instance, '1932 or 1933 or 1934'. If you have selected a year
you do not want, press on that year box again and it will be
deleted.

 Try selecting a few years and then deleting some of them
(for instance 1936 or 1937), ending up with one or two years.
Then return back to the screen which has 'Go to first item'. Now
press 'g', and you will soon be shown the first record of the
year you selected. A message will also appear at the top of the
screen, stating how many records for that year have been found.
It might say, for instance '127 retrieved'. If there are more
than 1000 records retrieved, you will be told, for instance,
'1000 out of 1756 records retrieved'.

 If, at any point in a structured query you want to cancel the
whole query, you will see a 'Delete' box at the bottom of the
initial page which gives you choice of person, ethnic group etc.
Select this, or press 'd' and the old query will be deleted.

 Go back now to the structured query initial page, delete the
old query, and select 'o' for other date. You will now be pre
sented with a request to enter a date in the form yyyy or
yyyy/mm or yyyy/mm/dd.
This means that you could enter the date as any of the
following:

1936
1936/08
1936/08/26

the last of these meaning the twenty-sixth of August 1936. On
typing Enter (carriage return), you will be taken to a list of
dates. You can then select one or more dates from this list.

 Try selecting a couple of days of the year, and you will be
shown all the records made on those days.

 Now try the other types of structured queries, people,
ethnographic groups, medium, source of material. In each case
you will be asked to supply a word. If you supply nothing, in
other words type 'Enter' without any word, you will be taken to
the start of a list. This would, for instance, be a way of
seeing what are the names of the people or places in the
material. Or you can type in one or two letters, 'a' or 'ab' or

201

'abrah' or 'abrahams'. These will take you to slightly different
places in the list in each case. Try this out.

 You can go on down and up this list by using the 'c' or con
tinued, and 'b' (back) keys or boxes at the bottom of the list.
You can select names, places, etc. as you need. The query will
then again be built up on the right hand part of the screen.

 You can combine different sets of terms, which are joined by
'and', each set having within it 'or'. For instance, try the
following. You want to look at all the photographs taken of the
village of Chepoketami by Stonor. So you select 'photographs'
under medium, 'Chepoketami' under locality name, and 'Stonor'
under person. Then run the query and see the result.

 There are two further refinements. You may be interested to
read about them, but neither of them will work with the small
sample database. They both refer to possibilities which you
could explore later, and currently exist on a particular
application (the Naga videodisc and database). If you do not
want to read about them at present, go on to the sixth paragraph
before the end of Exercise 3, starting 'Now that you have
seen...'

 Select the 'Locality name' list at some point and have a
look at it. If you have the full Naga database you will see that
some of the places are just a single word. In others, there is
an = sign, followed by another word. This reflects the fact that
places are often spelt in very different ways. When there is an
= sign, this indicates that what comes after it is the standard
name of the place. If you just want to find the variant, select
the name before the =. You will then be shown the map record
with all the variants on it. If you want all the records, with
all the variant spellings, which are indexed by the standard
form, then go to the word that appears after the = and select
that.

 When you do select a standard place name in a structured
query, the first record you will be taken to will be a locality
record. This has the following form:
__
(computer screen)

 map * map record *

 standard name = all the synonyms

202

 You will be given all the variants of the standard name.

 If you select 'map', you will be taken straight to the map
which has the standard name you have selected on it. Try that.
Then return to the previous screen and try 'map record'. You
will now be taken to the following screen.

(computer screen)

 map *

 covering map *
 adjacent maps:
 NW * N * NE *
 W * E *
 SW * S * SE *

Help * Return *
__

 If you select 'map', you will be taken to the map which has
the name of the place which brought you to this map record. If
you want to go up to a higher level map, then select 'covering
map', which shows you the region within which this particular
map is to be found (which will contain one or two names which
will give you an idea of where the sub-map is located). Typing
'r' for return will take you back again to the lower level map
record.

 If you want to move to adjacent maps, this is done as fol
lows. Imagine that you are currently in the middle of the set of
maps, with other maps to the North (N), North-East (NE) etc. If
you want to see the map adjacent to the East of your current
map, move to the box marked E and select it. This then becomes
the current map. If you select it, then you will be shown that
map.

 Now, if you want to return to your original location, you
would imagine yourself in the middle of the set of maps and
obviously your earlier map would be to the west, so you would
choose W or west. Alternatively, if you type 'r' for return, you
will return to the earlier map record. Try this out.

 Now that you have seen how to set up free text and
structured queries, select the 'b' (Both free text and
structured query) choice in the first screen. This allows you to
run a free text query within a structured one.
 Supposing, for instance, that you wanted to see all the
artefacts in a particular museum which showed a particular

203

coloured hat.

 You would select 'both free text and structured query', then
select 's' for structured query. Then choose medium and within
this 'artefact'. Then select 'Source of material' and select
'Pitt Rivers Museum'. Then return to the screen which allows you
to select 'Free text query' and select that and type in 'yellow
hat'. Then 'Go to first record'.

 Using the records in Appendix J, devise for yourself a
simple
'both free text and structured' query, and see if you can find
the record(s) you want.

 You have now learnt how to do four different kind of search
es; by hierarchical contents, by free text searching, by struc
tured searching, and by combined free text and structured
searching.

EXERCISE 4
Altering the retrieval style.
 The normal retrieval style is by record. That is to say,
the answers to a query will be presented as a set of records.
For some purposes it is quicker to retrieve information in other
forms. . If you type 'A' for 'Alter retrieval style' when that
is presented, you will be presented with a screen:
__
(computer screen)

 Data retrieval *
 Caption retrieval *
 Help *
 Return *
__

 Select 'Data retrieval' and then try a query. You will now
be taken to one of three things.

 If you are taken to a picture, either a still image or a
start of a film, you can look at this. If there is a 'next' box
on the menu bar, then you can go straight to another image or
piece of film in a sequence. If there is not such a choice, then
selecting 'i' for 'new Item' will take you to the next piece of
data retrieved by the query. If you want to see the record which
describes the image on the screen, type 'r' for return. If you
want to go back to the image again, select 's' for show.

204

 You may, alternatively, be taken to a piece of text, that is
the paragraph of a book or diary. Here you can again go back to
the record that describes this paragraph with 'r', or read
through further paragraphs of the same source with 'n' for next
and 'p' for previous.

 Thirdly, you may be taken to a record which contains two or
more illuminated boxes. For instance, a series of film sequences
may be presented. Choose one of these in the normal way by
pressing the 'Enter' key. You will then be shown the image. To
see the next image or film in this record, type 'r' and repeat
on another box.

 Note that if you return from the data to the record which
indexes the data, you have moved up a level in the system. If
you select 'i' for new Item at this level, you will be shown the
next record. It is as if you had returned to 'record retrieval
mode'. To go back down to the level of data retrieval you need
to go down to the particular text or image with 's' for show.

 Note also, that if you mark 'data' (images or text), you will
be asked for captions. Nor will you be able to 'expand' such
items that you have captioned, since they have no indexing terms
associated with them. If you want to mark them, you will need to
go up to the level of the records associated with the data, and
mark those records.

 Now select go back up to the base page and select 'Alter
retrieval mode' and you will be given the choice of 'Caption
retrieval' and 'Full record retrieval'. Select 'Caption retriev
al' and a list of short captions is presented, each of which has
a box opposite it. Moving up and down this, and pressing
'Continued', or 'Back' if necessary, you can select a caption.

 When you do this, you are taken to a particular record,
which will take you to an image or text. When you return from
this record, you will find yourself in the caption list again.
If you re-select 'Alter retrieval style', you go back into
selection by Record. Try making queries using the caption mode.

EXERCISE 5
Marking the records and examining or saving them.
 You will have noticed on a number of screens the choice
'Mark'. Selecting this allows you to mark records. Let us try
this.

 Enter free text mode in the 'full record retrieval' style

205

and find a record. Now type 'm' or select the mark record box.
You will now see 'Item marked as relevant' at the top of the
screen. If you want to change your mind, select the same box,
which is now called 'unMark record', and the item will be
unmarked again. Try marking and unmarking the record. Mark three
or four records like this and then return to the previous (base)
screen.

 This will now have a choice called 'Keep the marked record',
select the box or type 'k' and you will be asked for a caption.
Think of a word or a few words which will remind you what the
items which you marked were about, for instance 'fishing' or
'fishing with nets'. Type the word(s) you have chosen and enter
this caption with an 'Enter'. You will now see that the label
has changed to 'Inspect the Marked items'. Select this with the
appropriate box or letter 'm', and you will be shown a list. For
example you might see:
fishing with nets
 Del: * See * a fishing expedition with nets
 Del: * See * some nets used in fishing
 Del: * See * nets which are used by women fishing
and so on.

 This gives a list of the shortened captions of the records
you have marked. If you want to delete one of the records, you
can do so by selecting the delete box, if you want to see the
full record, press the 'See' box. On typing 'r' you will come
back to this list. The list might have several files of items
that have been marked during the current session. Try to look at
and delete one or two of the records you have marked.

 You have now marked some records which have a caption. If
you go to a Videodisc image or page of text, using 'show' or a
box, then there will be a 'mark' choice. When you press mark in
these cases, you will be asked to supply a caption for the
image. Thus you can mark a photograph, a piece of moving film, a
still from some moving film etc. Try to find some moving film
and supply captions in this way. Then return, keep the marked
items, supply an over-all caption and look at them. You will now
have two sets of items, one a set of records with the captions
highlighted, one a set of images or texts with your supplied
captions in ordinary letters.

 There are two uses for these files of marked items. One is to
use them as the basis for building up a file which can be saved
after you leave the database. This file can then be edited and
re-entered in the database.

 If you have the full CDS 2000 system (but not DISCAT on its

206

own), you can save this set of marks to a permanent file as
follows.

 When you have marked a set of documents, return to the page
which allows you to 'keep' the marked file. 'Keep' the marked
file, giving it a name, and then you will have the choice of
'Inspecting the marked file'. Select this, and you will be shown
a list of marked items, and on the bottom line there is a chance
to choose 'output' and 'input'. If you select 'output', you will
be asked for a name. Choose a name and enter it, and then the
set of marked items will be written to a permanent file of this
name, with the extension .mks in whatever directory you entered
by.

 When a marked file is 'output' in this way, it is deleted
from the database. But if you want to retrieve it, select
'input' at the bottom of the screen, or when given a choice of
'Input marked file' and specify the name of the file you want to
retrieve.

 When you leave the database, but while you are still in
'muscat', you can print out the marked file by typing as
follows:

c-getmrecs filename.mks to filename ('filename' being the name
you gave)
 (or, if you have a DA system, then use 'c-getdiscm' instead of
c-getmrecs)

Then type:
c-print filename to filename1
You will then have an ordinary text file, called filename1.txt,
which can be printed out with a word-processor.

EXERCISE 6
Marking records and expanding the query.
 The other use of the marking system is a powerful extension
of the searching system and we will explore it now.

 Go to a particular record (using a short free text query) and
press 't' for terms. This will produce a list of the terms by
which that particular document is indexed in the database.
Against each term is a small box with 'Add' against it. Try
adding one or two terms. You will be given a message at the top
each time stating that the term has been added to the query. If
you return to the previous screen and inspect the free text
query, you will find that it now has these new terms added auto
matically to it. Try doing this with a record.

207

 Now do another query and mark three or four records with 'm'
for mark. Return to the 'base page' and 'keep' and 'inspect' the
marked list. You will now see a choice 'Expand'. Select this
box, or type the letter 'e'. After a short while the computer
will produce a list of words, each with 'Add' against it. These
are all the terms by which the three or four records you marked
are indexed, sorted into an order. The order is one which tries
to show the most useful (that is statistically most linked)
terms first.

 Thus if you had three records, all with the word 'house' in
them, two with 'roof' and one with 'thatch', you would get in
order house, roof, thatch. But there may be several words which
appear in all three records and are hence all equally well
correlated. These are then placed in order of their frequency of
appearance in the whole database. Thus, if 'house' appears in
all three records, but is a very common term, whereas 'blue'
also appears in all of the three records, but is a very uncommon
term, 'blue' will come before 'house'.

 Try adding a few of the more highly associated terms and
re-running the query. You will begin to get different results,
which can then be marked again, and further terms added. In this
way, your intuitions about associations and the computers
discovery of statistical associations will be working together.
You will mark the records which seem good answers to what you
were really looking for, and the computer will suggest other
keywords and associated words which improve the query.

 You should now be able to explore the materials by your
self. Remember that there are 'Help' screens for most of the
choices and you can always return to the start with repeated 'R'
keys if you get lost. To exit from the system, type x. (If you
are then presented with a muscat> prompt, type 'stop' followed
by a carriage return (enter) key.)

